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Abstract

The ubiquity of digital technologies in citizen’s lives marks a major qualitative shift where
automated decisions taken by algorithms deeply affect the lived experience of ordinary people.
But this is not just an action-oriented change as computational systems can also introduce
epistemological transformations in the constitution of concepts and ideas. However, a lack of
public understanding of how algorithms work also makes them a source of distrust, especially
concerning the way in which they can be used to create frames or channels for social and
individual behaviour. This public concern has been magnified by election hacking, social media
disinformation, data extractivism, and a sense that Silicon Valley companies are out of control.
The wide adoption of algorithms into so many aspects of peoples’ lives, often without public
debate, has meant that increasingly algorithms are seen as mysterious and opaque, when they
are not seen as inequitable or biased. Up until recently it has been difficult to challenge
algorithms or to question their functioning, especially with wide acceptance that software’s inner
workings were incomprehensible, proprietary or secret (cf. open source). Asking why an
algorithm did what it did often was not thought particularly interesting outside of a strictly
programming context. This meant that there has been a widening explanatory gap in relation to
understanding algorithms and their effect on peoples’ lived experiences. This paper argues that
Critical Code Studies offers a novel field for developing theoretical and code-epistemological
practices to reflect on the explanatory deficit in modern societies from a reliance on information
technologies. The challenge of new forms of social obscurity from the implementation of
technical systems is heightened by the example of machine learning systems that have
emerged in the past decade. A key methodological contribution of this paper is to show how
concept formation, in this case of the notion of “toxicity,” can be traced through key categories
and classifications deployed in code structures (e.g. modularity and layering software) but also
how these classifications can appear more stable than they actually are by the tendency of
software layers to obscure even as they reveal. How a concept such as “toxicity” can be
constituted through code and discourse and then used unproblematically is revealing in relation
to both its technical deployment but also for a possible computational sociology of knowledge.
By developing a broadened notion of explainability, this paper argues that critical code studies
can make important theoretical, code-epistemological and methodological contributions to
digital humanities, computer science and related disciplines.

Introduction
In the past decade, due to the perceived lack of accountability of algorithmic systems, particularly automated decision
systems, a new explanatory demand has crystallized in an important critique of computational opaqueness and new
forms of technical transparency called “explainability.” We see this, for example, in challenges to facial recognition
technologies, public unease with algorithmic judicial systems and other automated decision systems. There have been
new regulatory attempts to capture some of the ideas that stem from explainability such as the Algorithmic
Accountability Act 2022 in the US, and the General Data Protection Regulation 2016/679 (GDPR) in the European
Union. These forms of regulation mandate a requirement for a user of algorithms to be able to seek a representation (or
“explanation”) of an algorithm used in an automated decision by a computer system and that the developers should
provide one (see [Goodman and Flaxman 2017], [Lum Chowdhury 2021], [Selbst Powles 2017], cf [Wachter, Mittelstadt,
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Floridi 2017]). These are important issues and are changing the way in which algorithms are designed and

implemented.[1]

This public concern has been magnified by election hacking, social media disinformation, data extractivism, and a sense
that Silicon Valley companies are out of control. The wide adoption of algorithms into so many aspects of peoples’ lives,
often without public debate, has meant that increasingly algorithms are seen as mysterious and opaque, when they are
not seen as inequitable or biased. Up until recently it has been difficult to challenge algorithms or to question their
functioning, especially with wide acceptance that software’s inner workings were incomprehensible, proprietary or secret
(cf. [Berry 2008] regarding open source). Asking why an algorithm did what it did was often not thought to be particularly
interesting outside of a strictly programming context. This meant that there has been a widening explanatory gap in

relation to understanding algorithms and their effect on peoples’ lived experiences.[2]

However, in this paper rather than focus on the regulative aspect, I want to use the insights of critical code studies to
explore how the code itself might usefully be analysed in situ, rather than through a secondary representation created

by an “explainable” black-box.[3] Explainability is a key new area of research within the fields of artificial intelligence and
machine-learning and argues that a computational system should be able to provide an explanation for an automated
decision. This has become known as the problem of explainability for artificial intelligence research and has led to the
emergence of the subfield of Explainable Artificial Intelligence (XAI) (see also [DARPA n.d.], [Sample 2017], [Kuang
2017]). There has been an important theoretical distinction within this field of explainability between the notions of
explanation and interpretation. An interpretable system can be understood as designed as a human-readable system
from the bottom up. This often uses “simple” models, straightforward calculations or filtering which can be
communicated easily. In contrast, an explainable system is a system that incorporates a secondary automated system,
usually using machine learning, to machine-read and model the primary system, and thereby to provide an explanation
of how this system works. Explainability has therefore emerged as a term that usually seeks to close an explanatory gap
by means of responses generated by technology itself. As Rudin argues, “the field of interpretability / explainability /
comprehensibility / transparency in machine learning has strayed away from the needs of real problems…. Recent work
on explainability of black boxes – rather than interpretability of models – contains and perpetuates critical
misconceptions that have generally gone unnoticed, but that can have a lasting negative impact on the widespread use
of machine learning models in society” [Rudin 2019, 2]. Indeed, I argue that the idea of a technological response to an
interpretability problem is doomed to failure while explainability is understood through such narrow technical criteria and
instead requires interdisciplinary approaches([Berry 2023]; see also [Dobson2021]).

The aim in this paper is to develop the insights developed through critical code studies which uses methods of
interpretation and close reading of the code to contribute to re-thinking the notion of explainability by looking at a case
study. In this paper I use explainability to gesture towards a method of tracing the underlying mechanisms and
interactions within software towards an explanation of the functioning of the code. Within artificial intelligence,
explainability is sometimes explicitly linked to automated processes of producing explanations, whereas interpretability
is linked to human-readable code that is easily understood by a human programmer. In both cases an explanation is
sought, so here I prefer to use the term explainability as a critical method for seeking an explanation, and highlight
“automated explainability” where this is undertaken by software (Explainable AI). This can be usefully compared with
interpretability as the use of a model for the code that is explicitly written to be easily read and understood by humans
(Interpretable AI) (see [Rudin 2019]). Broadly speaking, explainability has tended to become an automated approach,
and here I want to argue that if it were re-articulated through the concept of interpretability it could become a strong
analytical method for reading computer code critically. I also hope to show that critical code studies and explainability
are ways of thinking about the digital and computation that would be extremely useful for digital humanities more widely

but also for STEM education and computer science more generally (see also [Marino 2020, 230]).[4]

1. Theoretical Context
In this paper, therefore, I seek to widen explainability's applicability through Critical Code Studies and in doing so, to

create connections to ideas of explanation, the paratextual[5] of computer source code, and the value of close-reading
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code as an explanatory approach. By the paratextual elements I am gesturing to the importance of a more capacious
notion of source code that includes documentation, commentary, blog-posts and even social media related to the code.
In this case I look at the “WIT Toxicity Text Model Comparison” (What-If-Tool) developed by Jigsaw and Google (both
units within Alphabet) that aims to classify “toxic text” in a dataset and which contains a remarkable normative structure

incorporated into its algorithms.[6]

Within the code that I examine in this paper, the notion of “toxic” and “toxicity” and the relation of these words to their
deployment in software are crucial for this analysis. By using approaches from critical code studies, the aim is to help
explain how a machine learning model can classify “toxicity” by tracing the concept through layers of software, the so-

called software stack, by close attention to the source code which serves as a document of its usage.[7] That is that
code can be made explainable by tracing concepts through a close reading of the source code.

Critical code studies has been developed and supported by a range of scholars working particularly at the level of code

to attempt to apply humanistic interpretative approaches to the study of the source code in computer systems.[8] One of
the latest examples of this is Mark Marino’s Critical Code Studies which includes a number of examples of reading
source code in practice [Marino 2020]. He writes,

in our digital moment, there is a growing sense of the significance of computer source code. It has moved
beyond the realm of programmers and entered the realm of mainstream media and partisan political
blogosphere. Those discussing code may not be programmers or have much fluency in the languages of
the code they are quoting, but they are using it to make, refute, and start arguments. There is also a
growing sense that the code we are not reading is working against our interests.  [Marino 2020, 3]

Marino’s approach foregrounds the use of case studies and close reading of the code to develop a number of strategies
drawn from the humanities for understanding code. Indeed, he argues critical code studies “was born of the humanities”
[Marino 2020, 228]. Essentially Marino foregrounds the importance of “understanding” and exegesis for this approach
[Marino 2020, 20, 237].

I would like to start with a discussion of this theoretical approach inasmuch as when we come to understand computer
source code we are immediately faced with a dilemma in terms of a reading which is attentive to this interpretative
dimension together with the explanatory aspect. In a sense I want to present a double aspect theory in relation to
computer source code, in particular the way in which it is both a casual-deterministic mode of what we might call
mechanical agency, and its interpretative mode of textuality. Marino highlights the understanding applied through
approaches which privilege the interpretative dimension, but I argue it is crucial that we are able to move between these
two aspects (explanatory/ interpretative) if we are to provide a full account of computer code. This is also a useful
distinction to make if we are to make sense of the current debates over explainability. We might note that a broadly
interpretative approach which focuses on case studies may lose the explanatory aspect of the mechanical operation of
computer code. In other words, it might lose the value of explaining why code has the structure it does and why a
particular computer language has the value it does for its programmers, which could be its effective or expressive
potentialities, for example.

In contrast I would like to use a realist notion of computer code, which involves an attempt to describe the real
structures, entities, and processes that make up computer code and which exist independently of our descriptions of
them. So, we should be attentive to the tendencies that emerge from the causal power of entities, structures, and
mechanisms. That is, to focus on the real, operative mechanisms which may or may not produce observable results.
This is because computer source code consists of a number of sub-systems which draw on a “multiplicity of casual
mechanisms at work at any time” and can be explained through a broadly realist explanatory framework [Outhwaite
1987, 175]. This opens up a number of useful complements to interpretative approaches to understanding code
because it allows reference to unobservable entities which go beyond our direct experience, and which therefore help to
demonstrate the existence of non-obvious determinations of observable events within code in operation, or which can
be inferred from the inclusions or references of programmers to paratexts in the code. This is not to descend into
metaphysics, indeed one should follow the advice of Whitehead and avoid “misplaced concreteness,” that is, to too
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easily assume that concepts are entities that are unproblematically in existence. Here we might follow [Hacking
1983, 27] and distinguish between “realism about theories from realism about entities” [Outhwaite 1987, 178]. As
Outhwaite explains, “to put it a bit crudely, true theories state what is the case. A realism about entities simply asserts
that some thing or things exist” [Outhwaite 1987, 178]. In avoiding the notion of determinate entities we instead focus on
the provisional understanding of computational structures and mechanisms. So that the practices of computer
programmers and users cannot be understood except in terms of the computational structures within which they
participate. This is to highlight how the explanatory dimension of computer code can usefully contribute to “filling out”
interpretative textual approaches to understanding code.

In terms of understanding a particular case study of computer code, I therefore argue that we would need to include in
any account of source code the explanatory layers that might be found upstream from the code under investigation. Not
so much black-boxes as obscure networks of code which are formed from the social and economic factors (or para-
textual elements) which surround code. This includes both networks in a technical sense, as the code is structured into
self-standing objects, functions and applications, but also in a social sense, especially in terms of the social networks
that are important in creating and maintaining the code in operation. These can be thought of as the infrastructures of
code. These are instantiated within computational frameworks, operating system structures, data structures, language
constraints, hardware specificities, or any number of wider sociological structures that might be not observable directly
but which are sedimented within code downstream from these larger structural frameworks or the code situation with
which we are working. Clearly, in this case “the nature of the object should determine the most appropriate methods of
investigation” in terms of the whether one attempts to determine micro or macro studies in relation to it [Outhwaite
1987, 182]. This brings forward the importance of the selection made as a researcher and the reflexivity that should be
foregrounded in any analysis of critical code study.

Additionally, it is crucial to understand the conditions of action and the goals towards which a particular piece of code is
aimed. The “conditions” or “goals” may be defined as givens. If directed by a project or work situation these may often
be fixed, unexaminable or relatively unchangeable. These conditions or goals defined as givens will therefore variously
limit and constrain the resultant focus of the code and may impact directly the language choice, framework, approach
and dependencies used. They can usually be discerned in the surrounding documentation of code or in the comments
where programmers often highlight the direction of processing and its intended function. Indeed, sometimes
programmers may express their feeling or complain about the code quite explicitly if they feel constrained by the
framework or language choice foisted upon them (see [Berry 2011, 69]). Some organisations also have a “house style”
of code, which guides the choice of words representing variables, capitalisation, functional relations (e.g., internal
libraries and dependencies), commenting practices and even the formatting of the code. This may be an established or
published naming and coding standard within an organisation. But any bureaucratic discipline laid on the coding
practices and source-code format is grounded in the expectation of resistance. Indeed, source code can sometimes
reveal the pressures between technical practice and bureaucratic limitation, most notably expressed in the comments
sections, or sometimes in variable naming. However, if the code produced is too much at variance with the style or
practices of an organisation then there can be a “return of the repressed” in which the repressed element of the freedom
of the programmer in a “house style” may manifest itself in idiosyncratic code or resistance expressed in the coding (see
[Berry 2011, 68–70]). Indeed, the fundamental repression on which bureaucratic organisations are based on, in terms of
standardisation and process management, may surface when programmers stray too far from the limits set by
organisations and result in heavy-handed responses including possible expulsion of the programmer from a project, or
even their termination of employment. Hence, to avoid conflict in technical work such as programming a certain degree
of autonomy tends to be present and the bureaucratic concern with the software may leave the technical process to the
programmer and confine judgement to the appraisal of the final code product. By the means of assessment by result,
normal bureaucratic management can be maintained over software development. This is helpful for critical code studies
as within the source code there can often be traces left behind which give clues as to the way in which a particular
algorithm was formulated, the assumptions or limitations of the code, and occasionally the conflictual aspects of code-
writing which are documented in comments.

Within the source code although we can sometimes observe this conflict play out, but more often code is presented in
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the form of a prosaic matter-of-factness stripped of its individuality. It has, so to speak, been painted grey in grey, as
Hegel observed about uncreative philosophy. This common style in programming, which we might call “coding from
nowhere” is seen where code is presented as apolitical, disinterested and placed “above struggle.” Many examples of
this can be seen in open source and free software projects where the values of the project may be more easily
observed in the code, documentation and debates that are often freely available to examine on mailing lists and social
media (see [Berry 2008]). As we will see in the case of the code later examined in this paper, although a technical
project might aim to align with the interests, values and goals of society in terms of notions of communicative discussion
free from domination, which in this case they define as “toxicity,” close reading the code demonstrates the devotion of
the programmers to the development of means and instruments. By focussing on technical means they thereby repress
the ends and morality they purport to support. Indeed, in this case the code acts to automate the processes of
judgement over the “toxicity” of online discussions creating abstractions and a misplaced concreteness which results in
a simplistic binary characterisation of discourse. That is, the models either find a comment toxic or not toxic. This
process of technical hollowing out of the ends is also apparent in the processes of debiasing one of the text models, by
application of a set of weightings on crowd-sourced judgements of self-declared identity characteristics, in an attempt to
normalise model judgements. The technical regress this opens up is clear when one asks “who debiases the

debiasers?”[9] A question, incidentally that the system builders do not tend to ask.[10] To paraphrase György Lukács,
who sarcastically lampooned the debates of the Frankfurt School philosophers in the 1930s who would build critical
theories whilst enjoying a privileged economic condition, we might say that machine learning is similarly a beautiful
hotel, equipped with every comfort, on the edge of an abyss, of nothingness, of absurdity.

2. Reading Code
I now want to turn from this theoretical and methodological discussion to look at how these insights might inform a
realist critical code studies reading of code. The aim is to think about the way in which a notion of explainability can be
incorporated into a reading of a source code corpus. Due to limitations of space, I narrow the focus to look at an
explanation of how “toxicity” itself is deployed and understood in the code under review. To do this I look at the “What-If

Tool toxicity text model comparison” text-processing project.[11] This uses a tool developed by Google, called the “What-
if Tool”, that allows a user to,

test performance in hypothetical situations, analyze the importance of different data features, and
visualize model behavior across multiple models and subsets of input data, and for different ML fairness
metrics.  [WIT]

The “What-if Tool” offers a “range of interactive visualizations and guided explorations of a TensorFlow model, allowing
developers to explore how their model interpreted its training data and how subtle changes to a given input would
change its classification” [Leetaru 2019]. The WIT Toxicity Text Model Comparison (TTMC) uses this “What-if Tool” to
“compare two text models from ConversationAI that determine sentence toxicity, one of which has had some debiasing
performed during training” [TTMC 2021]. This is quite a complex piece of software, drawing on a number of libraries and

data sources, and applied to the wikipedia comments dataset.[12] This dataset is a tsv file which includes over “100k
labeled discussion comments from English Wikipedia. Each comment was labeled by multiple annotators via

Crowdflower on whether it is a toxic or healthy contribution” [Wikipedia Talk Labels 2021]. [13] Essentially this is a
dataset with labelling using a machine learning model trained by crowd-sourced using a simple machine learning
classifier based on a set of 4053 people being asked whether a comment on Wikipedia contained a personal attack or

harassment [Wulczyn, Thain, Dixon 2017, 2].[14] This was enumerated in one of five sub questions for classification by
the programmers, see figure 1.
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Figure 1. The question posed to Crowdflower annotators ([ToxicityQuestion 2017], [Wulczyn, Thain, Dixon
2017])

It is important to note that the machine learning model applied to the wikipedia comments dataset by Crowdflower is
different from the ones tested in the TTMC tool. Crucially it is the result of a different crowd-sourcing process and
therefore the concept of “toxic” in the dataset is different to the concept of “toxic” used in the TTMC. Nonetheless the
Crowdflower toxicity classification is left as a trace, or data field, in the dataset tsv file. This Crowdflower toxicity
classification is then utilised in the TTMC tool as a static value so that it can be compared to the other models it
compares. Although complex, understanding the different ways in which “toxicity” is being algorithmically produced as a
value is an important part of making an explanatory account of this code.

The WIT Toxicity Text Model Comparison is hosted on the Google Colab or Colaboratory which is a free Jupyter
notebook environment that runs in the cloud on a browser and stores its notebooks on Google Drive. Jupyter Notebook
is a web-based interactive computational environment for creating and running notebook documents, which are
browser-based “REPL” (Read–eval–print loops) containing “an ordered list of input/output cells and which can contain
code, text, mathematics, plots and rich media” [Wikipedia 2021]. This environment allows the development of code in an
interactive fashion and has become very popular as a way of doing data science and other programming activities which
are exploratory. The ease with which a Jupyter notebook can work with data and code allows a program to be viewed,
edited and run in real-time to test ideas. This means that it is an ideal environment for facilitating critical code studies
projects.

Figure 2. The What-If Tool Data Visualiser

The main part of the analysis of the WIT Toxicity Text Model Comparison compares two models drawn from
ConversationAI, an “initiative to protect voices in conversation,” to apply to the Wikipedia comments dataset.
ConversationAI claims to develop tools so that “globally, fewer people are silenced and more people are able to safely

engage in good faith discussion online.”[15] They further argue that their team “leads as an example of ethical practices

http://www.digitalhumanities.org/dhq/vol/17/2/000706/resources/images/figure01.png
http://www.digitalhumanities.org/dhq/vol/17/2/000706/resources/images/figure02.png
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in building technology” [ConversationAI 2021a].[16] ConversationAI is developed by Jigsaw and the Google Counter-
Abuse Technology Team and hosted on GitHub.

The two main pre-trained models used in the analysis are cnn_wiki_tox_v3_model.h5 and

cnn_debias_tox_v3_model.h5.[17] The latter has had debiasing performed during its training. Both models are
convolutional neural network models, accessed using the Kera open-source software library (see [Liu Anci 2019] for a

comprehensive explanation of generating models from sentence templates).[18] CNNs work by modelling animal visual
perception, and can therefore be applied to automatic recognition of patterns. CNNs are made up of multiple layers of
individual software sensory neurons (so-called receptive fields, which are made up of clusters of these neurons). The
word “convolution” comes from its use to describe a mathematical operation on two functions which produces a third
function. These models were created for the Computefest 2019 conference using a set of Sentence Templates datasets
developed by Jigsaw which have been “generated by plugging identity terms, occupations, and modifiers into a set of
templates, e.g., ‘I am a <modifier> <identity>,’ to form test sentences.” They claim that “As only the identity term varies,
examples using the same template — e.g., ‘I am a kind American’ and ‘I am a kind Muslim’ — should return similar
toxicity scores. Scores that vary significantly may indicate identity term bias within the model” [Vasserman et al. 2021].
As can already be seen from this initial simple mapping of the software, there are a number of complex dependencies
between the software being looked at, namely the WIT Toxicity Text Model Comparison, and the way in which it draws
on a software toolkit, (the What-If Tool), other models (ConversationAI), Sentence Templates (Jigsaw), software libraries
(Keras), and datasets shared on figshare (Wikipedia Talk Labels).

In developing a notion of explainability that considers the specificity of software system design and operation we can
draw from Manovich’s principles of new media which he outlines as (1) numerical representation, (2) modularity, (3)
automation, (4) variability and (5) transcoding [Manovich 2001, 27–48]. In reading the TTMC code I want to particularly
focus on the principle of modularity to help trace concepts. Complex software such as the TTMC is often built on a
number of layers which can be understood as akin to a building, with higher levels of the code resting on lower levels
until eventually a key foundational level might be discerned. This forms part of the practice of well-structured modularity
in code that enables software abstraction to be used whilst also simplifying complexity and creating more maintainable
code bases. A key methodological practice I want to use here is the tracing of a fundamental organising concept used,
often unproblematically in higher levels of the code, back to its original specification or construction. This is made easier
in well-structured code as the different layers of the software can be understood as distinct and performing low-, mid-, or
high-level processing functions. Using this modular principle in the interpretative practice can help explain the code
functioning and provide a method for tracing conceptual usage within and across software.

In the case of TTMC, the code level at which the comparison tool is accessed directly makes use of a key framing
concept and deploys it in its code operations which are then spread horizontally and vertically through the source code.
Due to limitations of space I can only give limited textual examples from the source code, but my aim is to trace how
toxicity becomes instantiated within the code, losing its nuance and context. By allowing the constellation of code,
libraries and data formed around it to reify it into a thing that can be calculated and used to test other textual discourse
we are able to see how a social concept becomes concretised into a technical concept of “toxicity.” The first place we
see the introduction of this concept is within the form “Read the dataset from CSV and process it for model” in the code
cells of the TTMC,

# Read the dataset from the provided CSV and print out information about it.
df = pd.read_csv(csv_path, names=csv_columns, skipinitialspace=True)
df = df[['is_toxic', 'comment']]

This code simply reads in the data from the wiki dataset and adds it to a dataframe(df).

label_column = 'is_toxic'
make_label_column_numeric(df, label_column, lambda val: val)

This is then labelled and turned into a numeric field as “is_toxic” is a value either 0 or 1. This is drawn from the



24

25

26

27

Wikipedia Comments Corpus and available on Figshare [Wikipedia Talk Labels 2021].[19] It is important to note that in
this corpus the problem of identifying personal attacks is treated as a binary text classification problem,

toxicity: Indicator variable for whether the worker thought the comment is toxic. The annotation takes on
the value 1 if the worker considered the comment toxic (i.e worker gave a toxicity_score less than 0) and
value 0 if the worker considered the comment neutral or healthy (i.e worker gave a toxicity_score greater
or equal to 0). Takes on values in {0, 1}. ([Detox 2021], [ToxicityQuestion 2017])

We should note that the toxicity defined from the wiki dataset is already normalised to a binary true or false value and
that the majority of the toxicity calculation in this dataset was created using the machine learning model described
above. However, nowhere in this code level is toxicity defined or explained, to understand this key concept for the code
we will need to widen our investigation to one of the key dependencies within the ConversationAI models and look to
another project [ConversationAI 2021b]. By accessing the click through link to the source code in Github we find the
underlying ConversationAI code [ConversationAI 2021a]. Within the file
unintended_ml_bias/new_madlibber/madlibber.py we find,

self.__template_word_categories = set([]) 
self.__toxicity = set(["toxic," "nontoxic"])

As explained in a comment in the files fat-star-bias-measurement-tutorial.ipynb and
FAT_Star_Tutorial_Measuring_Unintended_Bias_in_Text_Classification_Models_with_Real_Data.ipynb,

"Let's examine some rows in these datasets. Note that columns like toxicity and male are percent
scores.\n,"

"* toxicity: this is the percentage of raters who labeled this comment as being toxic.\n,"

However, the definition of toxicity, beyond a percentage value, is under specified and again we are required to dig
deeper into the code dependencies where in the ConversationAI Perspective API we find a definition. However we
might note the beginning of a slippage between the definition of toxicity as a thing and toxicity as a probability value. In
the ConversationAI system “toxicity” is defined as “as a rude, disrespectful, or unreasonable comment that is likely to
make someone leave a discussion” [Perspective 2021]. Toxicity’s effects are understood as,

stop[ing] people from engaging in conversation and, in extreme cases, [it] forces people offline. We’re
finding new ways to reduce toxicity, and ensure everyone can safely participate in online conversations.
[Jigsaw 2021]

Perspective API also helpfully documents how its model is able to classify text into a number of different outputs, all of
which are interesting in and of themselves, but here it is the Toxicity value that we are investigating (see figure 2) (see

also [Developers 2021]).[20]
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Figure 3. Overview of Perspective API [Perspective 2021]

Using the machine learning model the Perspective API returns what they call the “flagship Toxicity attribute”
[Perspective 2021]. The further one digs into the ConversationAI documentation the more slippery the notion of toxicity
becomes, from either 0 or 1 in the TTMC tool (and drawn from the Wikimedia dataset) to toxicity as a perception
probability between 0 and 1. The documentation explains,

the model output is a probability. As such, a comment with a TOXICITY score of 0.9 is not
necessarily more toxic than a comment with a TOXICITY score of 0.7. Rather, it’s more likely to be
perceived as toxic by readers.  [Perspective Model Cards 2021]

http://www.digitalhumanities.org/dhq/vol/17/2/000706/resources/images/figure03.png
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Figure 4. Toxicity Calculation [Perspective 2021]

As we move through the layers of the code, and indeed through the layers of meaning attached to the notion of “toxicity”
we find that the inputs to the toxicity value eventually start to hit what we might call a humanistic level. That is, the actual
source of the value is revealed as a calculation based on a set of human users asked to review and annotate a
comment dataset.

Each comment is tagged by 3-10 crowdsourced raters from Figure Eight, Appen and internal platforms.
The raters tag whether or not a comment contains an attribute (e.g., TOXICITY). We then post-process
the tags to obtain labels corresponding to the ratio of raters who tagged a comment as toxic. For
example, we label a comment as 0.6 for TOXICITY if 6 out of 10 raters tagged a comment as toxic.
 [Perspective Data 2021]

Here we are not given the actual datasets which underlie the model, and we are only told they are drawn from “a variety
of sources, including comments from online forums such as Wikipedia (CC-BY-SA3 license) and The New York Times”
[Perspective Data 2021]. However, we do discover that toxicity is a calculated numeric value, so if 6 out of 10 “raters”
tagged a comment as “toxic” it would be assigned a value of 0.6 toxicity and if 4 out of 10 “raters” tagged it, then it would
be given 0.4 toxicity. So the toxicity value is not, as one might assume, that the greater the value the higher its toxicity,
rather that it merely indicates the number of raters as a percentage who thought a comment was “toxic,” and the
number of raters per comment averaged between 3-10 people looking at the comment. This implies that comments may
actually be rated by different numbers of people, which therefore implies the “toxicity” ratings between comments are
also not directly comparable.

As far as I was able to discern, there is no indication of the number of raters per comment in the dataset, so already
toxicity has been abstracted from the underlying concrete data. Jigsaw claims elsewhere that “toxicity is a global
problem, and has potentially dire consequences for freedom of expression” and that “toxicity is pervasive online”
[Jigsaw 2020]. However, using Jigsaw’s own definition of toxicity as a percentage of the number of commentators on a
crowd-sourced platform between 3-10 who thought a comment would cause someone to leave a conversation, then
these claims seem somewhat confused.

http://www.digitalhumanities.org/dhq/vol/17/2/000706/resources/images/figure04.png
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3. Discussion
One of the key issues that remains problematic in these the models is not only is toxicity treated as a binary value but
they classify toxicity out of context as a text processing issue through a form of “feature analysis.” One of the side-
effects of this approach is that sentence classification can produce unintended and sometimes discriminatory or biased
outcomes. Indeed, Jigsaw explain, “higher numbers represent a higher likelihood that the patterns in the text resemble
patterns in comments that people have tagged as toxic. The number is not a score of ‘how toxic’ a particular entry is”
[Jigsaw 2017]. A result of this approach is that the model can produce not so much “toxicity” classifications as what
have been identified as “biased” results, as documented by Jessamyn West and shown in figure 4.

Figure 5. PerspectiveAPI results [West 2017]

Jigsaw developers in responding to these results explained, “identity terms for more frequently targeted groups (e.g.,
words like ‘black,’ ‘muslim,’ ‘feminist,’ ‘woman,’ ‘gay’ etc) often have higher scores because comments about those
groups are over-represented in abusive and toxic comments” [Jigsaw 2018]. This means that the data Jigsaw used to
train their machine learning models have the same problem and the names of targeted groups appear far more often in
abusive comments in the dataset they compiled. As the training data used to train their machine learning models
contain these comments, the machine learning models adopt these biases in the “underlying distributions, picking up
negative connotations as they go. When there’s insufficient diversity in the data, the models can over-generalize and
make these kinds of errors” [Jigsaw 2018]. They further explained,

After the initial launch of Perspective API in 2017, users discovered a positive correlation between identity
terms containing information on race or sexual orientation and toxicity score. For example, the phrase "I
am a gay Black woman" received a high toxicity score. In this case, the identity terms are not being used
pejoratively, so this example was classified incorrectly. [Jigsaw 2020]

And further that,

The source of the error was the training data itself — the training set did not contain sufficient examples
of nontoxic comments containing identity terms for the model to learn that the terms themselves were
neutral. This was because the vast majority of usage of these words in online forums is toxic — the model
was truly reflecting the state of the world. But the context of that usage matters [Jigsaw 2020].

As a result of these criticisms, Jigsaw has created a debiased ConversationAI model which attempts to mitigate some of
these problems. So “toxicity” is reweighted to take account of identity characteristics in calculating the toxicity value. In
essence it is the original and the debiased model that the TTMC software is comparing and which enables the slightly
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different toxicity classifications to be compared and visualised for exploration. But again, this is not made clear in the
ConversationAI models descriptions, and clearly there is a very different notion of toxicity being produced in each of the

models.[21]

Jigsaw explains that “research suggested that toxicity is an easy concept for annotators to understand” and therefore “it
was easier for more people to agree on what constituted ‘toxic’ speech — comments likely to make someone leave a
conversation — than it was for people to agree on other terms to describe problematic comments” [Jigsaw 2020].
Jigsaw reference a study conducted in December 2018 by the Anti-Defamation League which they claim shows that
marginalized groups experienced the most “toxicity” online, however the report does not use the term “toxicity,”
preferring to use the terms “hate” or “harassment” (see [ADL 2018]). The notion of “toxicity” which appears to be a
quasi-scientific metric for analysis through the machine learning models increasingly begins to look less stable as a
descriptor. Toxicity, as Jigsaw themselves acknowledge, was a term that was easy for people to understand as
“comments likely to make someone leave a conversation.” This enabled easier classification by the human raters, and
was, therefore, simpler to use to train the machine learning model or use it beyond limited specific contexts (for

example, see [Wulczyn, Thain, Dixon 2017, 3]).[22] Along the way, the notion of “toxicity” develops a much more
scientific connotation as it is mediated through the black-boxes of ConversationAI and Perspective.

In other words, through coding into software, a poorly defined term (“toxicitiy”) becomes reinforced into a set of software
functions, which through layering and the resultant obscuring of the action of the functions, becomes a definitional and
categorical classifier which is then applied unreflexively to text. Without attention to the way in which code can legitimate
and operationalise concepts in particularly instrumental ways, we stand to lose the subtle interpretative flexibility of
language use in particular contexts. In this example, toxicity, which is defined and implemented as a particular
operational function, shifts subtlety into a claim for rhadamanthine code and software able to determine or judge
language use which in actuality it does not have a strong claim to identify, namely “hate” or “harassment.” This is a
problem common across the domain of machine learning and artificial intelligence, which often over-claims and under-
delivers on its promise to provide solutions to complex problems.

4. Conclusion
In this article I have attempted to demonstrate the value of focussing on the source code using a method of critical
explainability in order to explore specific transformations of meaning in code. This method enables a set of principles
that can be deployed in reading computational artifacts including: (1) criticism of computational systems which is not
afraid of the results it arrives at, nor conflicts with power structures that it might encounter, (2) a distrust of closed-
systems and hidden structures, (3) a striving for open-mindedness in relation to a readiness to revise its approach,
methods and theories, (4) a suspicion of metaphysical or idealist approaches to understanding computation (e.g., the
invasion of myth into understanding software, code and algorithms), (5) a standpoint that challenges irrationalism in
relation to understanding computation, and lastly (6) a belief in the value of seeking defensible explanatory and
interpretative accounts of systems, objects, networks, and other computationally mediated structures.

As shown in this paper, the TTMC automates the decision as to whether a comment in a text is classified as “toxic” or
not. But the coding of “toxicity” is not a simple matter and its deployment in this and related software dependencies
requires explanation. By drawing on normative notions from explainability and interpretability, which highlights the need
for an answer to the “why question,” we can ask why code functions in a particular way. We can also outline how it does
this by following the logic of the code through the various layers of the software. By analysing the source code and other
related contextual documentation, new readings of the assumptions sedimented within the code are revealed. Indeed,
when elements of discourse are computationally measured it can transform and refigure our concepts, as shown in the
example of “toxicity” here. A key methodological contribution of this paper is to show how concept formation can be
traced through key categories and classifications deployed in code structures (e.g., modularity and layering software)
but also how these classifications can appear more stable than they actually are by the tendency of software layers to

obscure even as they reveals[23] Much work remains in developing methods for working with code, especially as it
becomes of more archival and historical interest. Approaches, such as the one developed in this article, will be needed



by the digital humanities and other humanistic fields to trace and interpret code. Critical code studies by working with
the methodological principle that source code can inform our understanding of computation and digital culture is an
important field for contributing to these debates.

Notes
[1]  In relation to these requirements, it is interesting to contrast the notion of “explainability,” which is intended to create explanations, with the

notion of “observability” developed by [Rieder Hofmann 2020]. They argue that “observability emphasises the conditions for the practice of

observing in a given domain…. We therefore position observability as an explicit means of, not an alternative to regulation” [Rieder Hofmann

2020, 3–10]. In this paper, I seek to explicitly link explainability to critique, so whereas “observability” is offered as an administrative concept, I

aim to use explainability as a critical concept (see also footnote 4).

[2] The example of this is the “mutant algorithm” described by Boris Johnson in the case of UK students’ exam results showing the gap between

expectation and output from algorithms (see [Coughlan 2020]).

[3]  Many of the explainability systems currently under development are actually interpretative automated systems, often using machine-learning

themselves, to create explainable products that can be presented to a user. This raises the interesting question of a double hermeneutic when

understanding as not one but two black-boxes are in evidence, with the explainable system itself not subject to explanation itself. See for

example https://fetch.ai

[4]  For an interesting discussion of the value of the social sciences and interpretation to computer science see Connolly 2020.

[5]  changed here and elsewhere from extra-functional to avoid namespace confusion

[6]  Jigsaw “is a unit within Google that explores threats to open societies, and builds technology that inspires scalable solutions” [Jigsaw 2021].

[7]  The word “toxic” is commonly defined as “poisonous” and “first appeared in English in the mid-seventeenth century from the medieval Latin

toxicus, meaning ‘poisoned’ or ‘imbued with poison’” [OUP 2018]. As Oxford Languages go on to explain, “the medieval Latin term was in turn

borrowed from the Latin toxicum, meaning ‘poison’, which has its origins in the Greek toxikon pharmakon – lethal poison used by the ancient

Greeks for smearing on the points of their arrows. Interestingly, it is not pharmakon, the word for poison, that made the leap into Latin here,

but toxikon, which comes from the Greek word for ‘bow’, toxon” [OUP 2018].

[8]  In providing explanations of code, software and algorithms, and more generally in the case of computational systems and platforms, the

differing ways of presenting these descriptions is reminiscent of the “Rashomon Effect” used in computer science to discuss the “multitude of

different descriptions” presented by models (see [Breiman 2001]). The use of a cultural artefact, in this case Rashomon, a Japanese film from

1950, directed by Akira Kurosawa, as an explanatory device in statistics and computer science is itself fascinating, although outside the scope

of this paper.

[9]  An attempt to deal with this regress was the Civil Comments project which used peer-review of human moderators to manage the process of

preventing uncivil commenting in a discussion. However, as they observed, “as much as everyone might like to see higher-quality, less-toxic

comments on their favorite news sites, the reality is that the number of sites willing and able to pay for comments software of any quality is not

large, or growing” [Bogdanoff 2017]. Revealingly this project folded as although everyone claims to want better quality online discussions few

are willing to pay for it [Bogdanoff 2017]. Nonetheless Civil Comments chose to make their ~2m public comments from their platform available in

an open archive available at https://figshare.com/articles/dataset/data_json/7376747 . See also Coral for another project with similar aims,

https://coralproject.net

[10]  One way in which the datasets are debiased is by running competitions, such as the Jigsaw Unintended Bias in Toxicity Classification

Challenge where an open competition is run over to stages with an award of $65,000 split over four prizes to the “best” algorithms that debiase

data. The challenge states, “you're challenged to build a model that recognizes toxicity and minimizes this type of unintended bias with respect

to mentions of identities,” see https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/overview

[11]  https://colab.research.google.com/github/pair-code/what-if-

tool/blob/master/WIT_Toxicity_Text_Model_Comparison.ipynb#scrollTo=UiNxsd4_q9wq

[12]  Text processing involves mechanical processing of text data to classify it in particular ways. This is different to text understanding which

seeks to provide an understanding of the meaning within textual materials. In the code discussed here, the aim is the mechanical identification

of “toxicity” rather than understanding it within context.

https://fetch.ai/
https://figshare.com/articles/dataset/data_json/7376747
https://coralproject.net/
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/overview
https://colab.research.google.com/github/pair-code/what-if-tool/blob/master/WIT_Toxicity_Text_Model_Comparison.ipynb#scrollTo=UiNxsd4_q9wq


[13]  A tsv file is a tab-separated values (TSV) file which is a simple text format for storing data in a tabular structure, for example, database

table or spreadsheet data, so that it can be transferred between different programs or systems. In a tsv file each record in a source table or

database record is represented as one line of the text file. The TSV files are similar to CSV files but use tabs instead of commas to separate the

data.

[14]  See also [Wulczyn, Thain, Dixon 2016] for the “Wikipedia Talk Labels: Personal Attacks” dataset.

[15]  The project presents its values as: Community: Communities should responsibly shape their discussions; Transparency: Open processes

enable better outcomes and trust; Inclusivity: Diverse points of view make discussions better; Privacy: We are privacy conscious in design and

execution; Topic-neutral: Good faith discussion can happen on controversial topics [ConversationAI 2021a].

[16]  ConversationAI is made up of three main parts, (1) Perspective API which “API uses machine learning to analyze a string of text and

predict the perceived impact it might have on a conversation,” (2) Tune, which is a “Chrome extension that helps people adjust the level of

toxicity they see in comments across the internet,” and (3) Moderator, which is “an open-source tool that uses machine learning to help

moderators identify and reduce toxicity in forums and comment sections” [ConversationAI 2021a].

[17]  See https://storage.googleapis.com/what-if-tool-resources/computefest2019/cnn_wiki_tox_v3_model.h5 and

https://storage.googleapis.com/what-if-tool-resources/computefest2019/cnn_debias_tox_v3_model.h5

[18]  A good overview of convolutional neural network models can be found at https://en.wikipedia.org/wiki/Convolutional_neural_network

[19]  To generate the Wikipedia Comments Corpus made up of discussion comments, [Wulczyn, Thain, Dixon 2017] processed a public dump of

the full history of English Wikipedia. The corpus contains 63 million comments from discussions relating to user pages and articles dating from

2004-2015. They used human annotators and machine learning to classify comments to identify certain forms of behaviour to understand with

the aim of reducing the level of what they describe as “toxic discussions” in online fora [Wulczyn, Thain, Dixon 2017]. Toxicity in this work is

linked to user behaviour, and each user is assigned a “toxicity level” used to understand and predict user behaviour.

[20]  Interestingly the Severe_Toxicity output is the result of a more recent model which deals with the problems of the original Toxicity model so

that it identifies “a very hateful, aggressive, disrespectful comment or otherwise very likely to make a user leave a discussion or give up on

sharing their perspective. This attribute is much less sensitive to more mild forms of toxicity, such as comments that include positive uses of

curse words” [Perspectives Attributes and Language 2021]. This the developers describe as “a different experimental model that detects more

severe toxicity and is less sensitive to milder toxicity” [Jigsaw 2017]. Clearly the same problems of definition and meaning are apparent in both

Toxicity and Severe_Toxicity scores.

[21]  One wonders, with all the problems of definition, why use the term “toxicity” at all for this code? There may, perhaps, be a cultural

explanation that helps us understand this. Toxic was a word that was clearly in the air whilst this software was being developed. The word “toxic”

was noted by Oxford University Press to have increased in usage dramatically prior to and during 2018 [The Guardian 2018]. With the Novichok

poisoning in the UK toxic chemicals were widely reported in the news, together with toxic chemical stockpiles, toxic substances following

hurricanes in the US and toxic waste in India being reported. Toxic gases were discussed and toxic air was a public health concern especially in

relation to air quality. The toxic algae disaster in Florida and had a central role in the state’s Senate mid-terms race. Additionally, the notion of a

toxic environment and the effect on workplace mental health and worries about toxic culture in corporations, such as Google were in the news.

Toxic relationships were identified in relation to family, partners and politicians and the notion of toxic masculinity became much discussed

following the #MeToo movement. It was no surprise therefore that “toxic” was chosen as word of the year in 2018 by the Oxford English

Dictionary because it was an “intoxicating descriptor for the year’s most talked about topics” and “the sheer scope of its application” [OUP 2018].

[22]  Detecting whether a user leaves a conversation is a much simpler and less computational complex question than attempting to understand

the sophisticated deployment of language by human participants in a conversation. In effect it becomes a binary question of leaves-

conversation/stays-in-conversation which is much easier to recognise and automate using software. This is, of course, an example of

reductionism in computation.

[23]  One might also note the extra-algorithmic discursive elements of textual descriptions which surround the code on webpages and in the

code archives which obfuscate, or even provide minimal and contradictory explanation of, what “toxicity” is. These textual elements, and here I

do not mean code commentary but rather the more general textual penumbra, can also serve to shape or direct human interpretation of the

code functionality. This might be helpfully thought of as the difference between the hard-core of a computational system (e.g., the code) and the

soft-core (e.g., the surrounding documentation, the textual descriptions and the marketing materials around a system).
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