
1

2

3

DHQ: Digital Humanities Quarterly
2023
Volume 17 Number 2

ᐊᒐᐦᑭᐯᐦᐃᑲᓇ ᒫᒥᑐᓀᔨᐦᐃᒋᑲᓂᐦᑳᓂᕽ | acahkipehikana
mâmitoneyihicikanihkânihk | Programming with Cree# and Ancestral
Code: Nehiyawewin Spirit Markings in an Artificial Brain

Jon Corbett <joncorbett_at_live_dot_ca>, Simon Fraser University https://orcid.org/0000-0002-3721-1640

Abstract

In this article, I discuss my project “Ancestral Code”, which consists of an integrated
development environment (IDE) and the Nehiyaw (Plains Cree) based programming languages
called Cree# (pronounced: Cree-Sharp) and ᐊᒋᒧ (âcimow). These languages developed in
response to western perspectives on human-computer relationships, which I challenge and
reframe in Nehiyaw/Indigenous contexts.

Introduction

Nohkompan,[1] my paternal grandmother, was Nehiyaw (Cree) and Saulteaux (Chippewa). After her passing and
understanding the matriarchal nature of many Cree peoples, I found myself looking at the Nehiyaw culture of her

mother, Nitâpân ,[2] for inspiration for my creative works. In 2014, I attempted to use Nehiyawewin (the Cree language)
words as variables using the Unified Canadian Aboriginal Syllabics [Unicode Inc. 2021]. My early attempts were
instantly problematic because the development environments (IDEs) I used would render the syllabics, like “ᑖ”, as
empty boxes “⌧”. So I searched for other solutions. However, at that time, the platforms I was most familiar with, such
as Processing, openFrameworks, Java, and C#, all shared this same “problem.” This experience sparked my desire to
bring Nehiyawewin, in its syllabic form, into being as a programming language. In this article, I present the physical and
abstract challenges of developing my Ancestral Code digital toolkit that allows a programmer to insert code blocks into
transcribed Indigenous stories that, once executed, produce a generative visual narrative of the transcribed story. But
for you to better understand this desire’s importance, it is customary in my heritage to first introduce myself.

I identify as Nehiyaw-Métis and belong to the Métis Nation of Alberta. The Métis in Canada are federally recognized as
one of the three Indigenous groups of peoples, the other two being First Nations and Inuit. The Métis have been
historically referred to as half-bloods or, more derogatorily, half-breeds. We are a people that came to be from the
blending of cultures and traditions of the first European visitors with the numerous Indigenous peoples of the “new
world.” Many of these first visitors were not men seeking to settle; they were merely coming to seek a better living as fur
traders. They were nomadic and travelled extensively, with many intending to return to their respective homelands when
they retired.

Nevertheless, these traders married into First Nation and Inuit tribal communities, often for financially strategic reasons.
My Great-Grandfather five times over was a historically notable English fur trader named John Sayer and was one of
these first visitors. These early relationships between European visitors and Indigenous peoples continued through
generations, with subsequent mixed-racial generations raised with a blend of European knowledge and their original
Indigenous languages and traditions. This concrescence of cultures and languages is how the Métis developed into a
unique culture that privileges the cultural teachings of their respective Indigenous heritages without entirely rejecting
their European roots.

http://www.digitalhumanities.org/dhq/vol/17/2/bios.html#corbett_jon
mailto:joncorbett_at_live_dot_ca
https://orcid.org/0000-0002-3721-1640

8

4

5

6

7

My research as a Métis scholar and digital media artist has since evolved from using computers and programming as
tools to generate my artwork to viewing computers as animate creatures, digital representations of my Indigenous
heritage. Subsequently, I see computer languages as digital extensions of Nehiyaw storywork and ceremonies that
reflect the epistemological, ontological, and axiological concerns of my Nehiyaw beliefs and practices. My perspectives
on computer programming critique the prevalent use of English in coding languages and the reflection of settler/colonial
perspectives in their design. Though I recognize that computer programming languages, like most technologies, are
constantly evolving and changing, I maintain that they are also seemingly immutable and typically manifest from a
“historically-essential … colonial impulse” [Ali 2014]. Most notably, the culture(s) from which modern programming
languages and practices grow “[come] with significant cultural baggage” [Heaven 2013]. Through my own visual media
art explorations with the popular new-media-art programming development environment “Processing”, I recognized
significant challenges to programming in anything other than English.

The detrimental legacy of colonial practices on the lives of Indigenous people is well documented, from forced
displacement from traditional homelands to attempted erasure of culture, language, and practices [Gradual Civilization
Act 1857] [Venne 1981] [Milloy 2008] [Milloy 2017]. As citizens of a globally connected techno-culture, we perpetuate
this erasure by embracing a technicism that incorporates a blind acceptance of technologies and the cultural systems
from which they are derived as necessary to engage with one another in our digital lives. Yet, critical theories of
technologies are continually demonstrating that digital technologies are neither “socially or culturally neutral” [Garneau
2018] nor are they “determinist, but rather [sites] of social struggle” [Warschauer 1998]. Despite this technicism,
navigating the modern technology ecosystem remains vital to Indigenous peoples, who actively utilize these new
computing domains for “survivance” [Vizenor 2008] and (re)establish both individual and community identities from
these technological relationships and their ancestral cultures [Ormond-Parker et al 2013].

By viewing computing through a lens of my Indigenous heritage, my perceptions of computer languages and
programming have been dramatically altered. My awareness of programming contexts informed by Nehiyaw language
and cultural practices has opened new understandings of how programming languages can facilitate a greater sense of
personal and digital identity and cultural belonging that go far beyond the purely functional operations of programming.
These experiences are at the heart of what has become my Ancestral Code project.

Ancestral Code is a wholistic programming environment built upon my own Indigenous computing design theory. It
consists of both hardware, in the form of a specialized keyboard for typing Nehiyawewin syllabics, and software in the
forms of a programming IDE and a multi-form programming language. The programming language component of
Ancestral Code that is the focus of this article aims explicitly to integrate a “wholistic” [Absolon 2010] braiding of
Nehiyaw language and cultural practices within its design. I use wholistic here instead of holistic because Indigenous
learning interconnects all aspects of being that include mind, body, emotion, and spirit and is not merely referring to a
“whole” as a sum of parts. In particular, Ancestral Code is my vision of how Nehiyaw culture and language can be
utilized as a primary interface for computer programming and computing design, uniting the values/benefits of Nehiyaw
perspectives with western programming practices. To begin this journey, I will first provide a brief background of what I
frame as an Indigenous computing design theory, describing the importance of this framework when approaching
technology and computing design development with an Indigenous focus. Next, I describe how this design influences a
unique perspective that views “Code as Story.” And then, I delve into the challenges (and related solutions) to my
ongoing efforts to bring the Ancestral Code platform for programming in Nehiyawewin to Nehiyaw communities. I hope
this platform can open new opportunities for heritage language use in our modern technological context and further
foster Indigenous cultural maintenance. Finally, I surmise and summarize how this work can be used or reproduced by
other Indigenous cultures with similar cultural perspectives and language construction.

Indigenous Wholistic Computing Design Theory

Computing system design theories continue to evolve and have been described by or compared to a wide range of
systems such as mechanical [Worden, Staszewski, and Hensman 2011], biological [Babaoglu et al 2006] [Benenson
2012], and hierarchical [Kleinrock and Kamoun 1980] [Abd-El-Barr 2009], to name just a few. Similarly, the past decade
has also seen increased interest in postcolonial computing and colonialism as an influencing or embedded aspect of

9

10

11

12

13

technological architectures [Irani and Dourish 2009] [Irani et al 2010] [Merritt and Bardzell 2011] [Dourish and
Mainwaring 2012] [Philip, Irani, and Dourish 2012] [Abdelnour-Nocera, Clemmensen, and Masaaki 2013] [Ali 2014]. In
developing an Indigenous computing theory, I consider common concerns from a general pan-Indigenous perspective,
recognizing that research by Indigenous scholars commonly employs cultural practices and knowledge such as
ceremony [Wilson 2008] [Cormier and Ray 2018], wholistic practices [Absolon 2010], honouring of oral knowledges
[Thomas 2005], and community engagement [Madden, Higgins, and Korteweg 2013].

From these general characteristics I also used Nehiyaw-specific knowledge to help shape my own approach of
establishing an Indigenous computing framework. The English term Cree is an anglicized form of the French word cri
meaning to shout or cry aloud, and is how early European settlers came to name the Cree/Nehiyaw people. However, I
do not refer to myself as Cree-Métis. I am Nehiyaw-Métis. Nehiyaw, in my heritage language, translates as “four-bodied”
or “four-spirit” people. We see ourselves as a people composed of four “bodies:” the physical, mental, emotional, and
spirit. Therefore, specific to Nehiyaw culture, I use spiritual teachings of the “four-bodies” framework to inform, describe,
and highlight the aspects of computing that are inherently Nehiyaw and reflect Nehiyaw understandings and knowledge
development.

Furthermore, each of these bodies has numerous cultural teachings that exist as living (oral) histories highlighting the
cultural significance of their meanings and relationships between humans and the world. In other words,
kinehiyâwiwininaw nehiyawewin / The Cree Language is our Identity [Wolfart and Ahenakew 1993]. The Cree language,
Nehiyawewin, is an intricately woven fabric that unites our life, being, and identity, across generations of knowledge and
embodies spiritual and sacred knowledge that spans thousands of years. Because Nehiyaw language is so integral to
Nehiyaw life, understanding user-computer relationships in a Nehiyaw context requires redefining philosophical
understandings of computer system design using Nehiyaw terms. Therefore, using Nehiyawewin in my theoretical
designs serves as a ceremonial healing practice in addition to its functional role of creating computational instructions. I
find these considerations crucial to the design of computing technologies for Nehiyaw people as they re-envision the
computer as a member of the community and an extension of one’s cultural identity.

Therefore, placing culture as the driving force behind the development of an Indigenous Wholistic Computing Design
Theory can, and will, often be at odds with western philosophies on computer function and design. For instance, cultural
attitudes towards concepts of time, order/sequencing, and efficiency can be radically different from their computational
definitions. For example, I wrote a program to digitally-bead portraits of my family. The first version of this program used
a basic loop to place pixel-beads on the screen in a sequence of rows, which it did in a left-to-right fashion. From a
computational perspective, this loop was simple and efficient. However, the original computational instructions did not
reflect my physical action of beading if I were to bead this image by hand. Nor did it capture the cultural significance of
the continuous thread that connects each bead. There is a special meaning in the unbroken thread. As a result, I
reformatted my code to reflect my Métis beading practice. The new code created alternating rows of digital beadwork
that progress from left-to-right, then right-to-left in a continuous unbroken stream. This updated code better represents
my physical process instead of code that created patterns that flowed in one direction, from left-to-right, as multiple
individual lines instead of a continuous loop. The best or most efficient code fractures the image’s construction, resulting
in digitally rendered images conforming to the technological tools’ design and language, favouring efficiency over
cultural focus.

Experiences such as these altered my perspectives on general computing design theories and stimulated my desire to
investigate computing design from Indigenous wholistic perspectives. Shifting the source of computing design from one
driven by systemic operations to one that is human and cultural requires a certain degree of re-prioritization. I opted to
expand existing system design theories by creating an Indigenous Wholistic Computing Design Theory. By identifying
and privileging Indigenous and Nehiyaw-specific perspectives within existing computational environments, I aim to
reevaluate what aspects of computing design are favoured over others.

In more concrete terms, systems design processes are vital because they create a clear overview intended to guide the
actual development of a given product, whether it is hardware or software. In an Indigenously informed design process,
this overview is still as essential but follows principles that promote [Indigenous] community collaboration and

14

15

16

18

17

engagement over the tools and technologies that will be used; emphasizes interrelationships between components by
establishing connections between Indigenous lived experience and the involved digital artifacts and their behaviours;
and is open and flexible, or even unconcerned, with time and timelines in solution development. In such a theoretical
framework western principles like Gestalt grouping or Fitt’s Law may not be applicable because the effects of cultural
knowledge on a design may alter how components are typically created, or how they behave and interact with one
another in comparison to systems focused directly at efficiency concerns like those found in data categorization, code
flow, and execution and processing times.

Indigenous Story as Code

What is coding if not a story? At a basic level, a story consists of five essential components: character(s), setting, plot,
conflict, and resolution. Scholar Annette Vee, known for her study of composition and rhetoric in computer programming
literacy, compares narrative writing with computer programming stating that they “are not the same thing [but] have a lot
in common and can even merge into each other” [Vee 2017]. The relationship between story and code is particularly
evident in esoteric computer languages such as “Inform 7” [Aikin 2009] and “Shakespeare” [Hasselström and Åslund
2001], where code is literally formatted as stories. Moreover, I argue that “normal” programming languages like C/C++,
C#, and Java also share storytelling’s main elements despite their visual structure, notation, syntax, and semantic
constructions. In “normal” programming languages, these story elements exist in more abstract contexts where
variables represent the “characters”, the “setting” is the programming environment, and the “plot” is the program’s
function as it operates up until its “resolution” or termination. I first learned how to program in elementary school in 1979
using Applesoft BASIC. My teacher explained BASIC’s syntax using story examples. I was so enthralled with the idea of
being able to represent the world around me using computer code that I started writing my journal entries in language
arts class as BASIC code. For me, coding is very much a form of storytelling.

In creating the Ancestral Code programming languages “Cree#” and “ᐊᒋᒧ” (âcimow)[3], my vision arrived as a genuine
dream. In this dream, I was sitting in a community lodge (i.e., tipi), listening to an Elder tell a story. In this story, an
image of Wîsahkecâhk, sometimes known as the “Trickster Raven” in Nehiyaw cultural teachings, was animated on the
wall behind him. Wîsahkecâhk was puppeted through the Elder’s words, while a syllabic subtitled transcription of the
story ran beneath the imagery. This dream revealed a path for me. It led me to understand that this generative virtual
landscape was a relationship between Nehiyawewin and the computer, and though this landscape was digital, it was still
a “place.” And here, in this place, I experienced my Ancestral Code project as each of the four “spirits:” The physical
experience of seeing and being present; the mental experience of processing and parsing the story; the emotional
experience of being attached to an Elder and feeling the story; and the spiritual experience of the dream state itself.

Furthermore, in my dream, the syllabic transcription was an instruction-set that manipulated the vision of Wîsahkecâhk,
thereby exposing me to the computing code. Thus, though this is a brief origin story of my Ancestral Code project, I
have interpreted the role of the four spirits in furthering its creation as a critical component of its development. As a
result, I have found new ways of applying Nehiyaw cultural teachings to my computer coding practice.

Challenges and Solutions
Though I expected to encounter obstacles in this project, I did not honestly foresee how deep into my coding practice
and theory I would be required to go to design the Ancestral Code programming language. In this section, I trace out
each of the challenges with working the Nehiyawewin orthography — including its use in the software and hardware,
how I incorporated Nehiyaw language structures into the programming language, and how I see culture as being crucial
to the programming languages I developed.

Orthography

The Nehiyawewin orthography, called ᐊᒐᐦᑲᓯᓇᐦᐃᑲᓇ or acahkasinahikana, literally translates into English as “spirit
markers.” Nehiyawewin also has a Standard Roman Orthographic (SRO) writing system in which the language can be
written with the standard Latin alphabet to aid English speakers in pronunciation. Though Nehiyawewin learners

20

21

22

19

frequently use SRO, many Nehiyaw first language speakers consider SRO an accommodation or adoption of western
processes. They also feel this system voids much of the cultural significance and meaning attached to the “spirit
markers”. Though I prefer to use Nehiyawewin spirit markers, most of the Nehiyawewin in this article is written in SRO
form for easier readability by English readers. I have included a glossary at the end of this article with definitions and a
pronunciation guide using the International Phonetic Alphabet (IPA) phonetic notation system.

My original desire to use acahkasinahikana exclusively in Ancestral Code was a conscious decision to combat the
“accommodation” of English language constructions and representations. However, in investigating my needs as a
programmer, these language-based concerns revealed that support for both SRO and acahkasinahikana are required to
support Nehiyawewin language learners that may come from different dialects or communities. For this reason,
programming in Ancestral Code can be performed in its Romanized form that I call Cree# (pronounced Cree-sharp) or
its syllabic form ᐋᒋᒧᐤ (âcimow). The Ancestral Code IDE allows the programmer to switch between the two styles,
where Cree# accommodates a certain level of familiar structure to the C# programming language, separating it from the
more story-like narrative structure of ᐋᒋᒧᐤ (âcimow). Switching between these modes provides unique alternatives to
experiencing written Nehiyawewin, where representing code in multiple cultural forms can be done without necessarily
favouring one over the other. Furthermore, the IDE development aspect revealed a couple, albeit minor, concerns,
namely:

Software: acahkasinahikana for coding

Using Unicode characters in modern programming environments is possible if the computing system supports the
desired character sets. The Unified Canadian Aboriginal Syllabics block of the Unicode Standard occupies 640 code
positions from 1400hex to 167Fhex. It includes orthographic glyphs for Blackfoot, Carrier, Cree, Dene, Inuktitut, Ojibwe,
and other Canadian Athabascan languages. Unfortunately, the coding environment is often the main obstacle in using
Unicode characters, especially as variable names and, more problematically, as keywords or reserved words. Typically,
this lack of support is simply because the environment often uses a pre-installed font that does not contain glyph(s) in
the desired code points of the font file. By default, the coding environments I am familiar with, such as Visual Studio and
Processing, use a fixed-width font/typeface such as Consolas, Courier, or Monospace. These fonts are common to
Windows OS systems but do not have the Canadian Aboriginal Syllabics block of glyphs. Until recently, changing this
font was not easy. Although, as of the writing of this article, the settings or preferences support in some IDEs is open to
changing the default font, some still limit the fonts that can be used. There also are limited fonts suitable for
programming using the Unicode Canadian Aboriginal Syllabics, and I argue there are currently no suitable fonts.
Though it is theoretically possible to use syllabics as variable names in those IDEs, reliance on English programmatic
tokens remains. The question then becomes, which font(s) can or should be used for programming with
acahkasinahikana?

Software: acahkasinahikana fonts

Though this may sound like a trivial topic from a western perspective, as it truly has little to do with actual coding and
more to do with aesthetic preference, my critical reflection on coding practice makes this a necessary point of
discussion. Remember that Nehiyaw acahkasinahikana are visual representations and extensions of being. They are
called spirit markers for a reason. So, their representation in the computer must be treated with equal consideration.

Most programmers would agree that fixed-width or monospaced typefaces are ubiquitous in coding because they align
very well in rows and columns and generally provide a greater distinction between similarly shaped characters like “0, o,
O,” narrow characters like “I, l, i,” as well as providing more space for syntactical and operational characters “(, {, [,!”
[Ardley 2014]. Combining this respect for the visual aspects of language with the need for a monospaced coding font
reveals two challenges. The first challenge is that, to my knowledge, only one monospaced font purposefully includes

the Canadian Aboriginal Syllabics blocks, Everson Mono.[4] The second challenge is that the physical structure of

1. How to use the Unified Canadian Aboriginal Syllabics block of the Unicode Standard, that is, what font
family/typeface to use for coding with syllabics.

2. How to address coding without, or with minimal, punctuation and numeracy.

23

syllabics makes using non-fixed-width fonts challenging to navigate as code. The visual structure of the major glyphs
(i.e., the glyphs representing a consonant and vowel pair) consists of reflected orientations of a single shape (ex. ᒥ ᒣ ᒪ
ᒧ). The resulting printed text is fairly consistently sized but is visually similar to coding in all English caps. This is not
necessarily a negative, as my original programs written in BASIC were done in all caps. But a more significant point of
consideration is how a culture perceives the visual design of its language. For example, in developing typefaces for
Canadian syllabics, Canadian typography designer Kevin King worked directly with Indigenous communities to ensure
their languages were written in the respective community’s preferred style. He notes that “to ignore this would result in a
text that was neither culturally appropriate for local readers nor able to convey adequately the meaning and atmosphere
of the text for that readership” [King 2022]. Adding to these, the limited number of monospaced fonts that support
Canadian syllabic glyphs encouraged me to develop a new code-friendly font to address these obstacles. This font
(Figure 1), I tentatively named “AC Mono,” was constructed using my wholistic design framework, and my choices in the
font design process are consciously aware of Indigenous visual aesthetics. I want to note here that my design of this
font was considered from a more pan-Indigenous perspective and not specific to Nehiyaw culture. This is because the
Unified Canadian Aboriginal Syllabics is not Nehiyaw specific – it represents glyphs from various North American
Indigenous languages. For example, as seen in the syllabic T-series glyphs like “tâ” (ᑖ) and “te” (ᑌ), I used thicker lines,
an emphasis on fluidity in the curves, and rounded features on the start and end points of the strokes. These organic
geometries and gestures are found in numerous Indigenous art traditions in North America, including the ovoid
traditions of Coast-Salish artforms, Inuit bone and stone carving, and Métis beadwork.

Figure 1. AC Mono Font glyphs for “tâ” (ᑖ) and “te” (ᑌ). Image by Jon Corbett.

In the construction of AC Mono, I used the typefaces of Everson Mono and Consolas only as sizing templates, building
my resulting font with the stroke weight of Consolas and the mildly rounded stroke end of Everson Mono. Of particular
note, syllabics have no differing case structures. Therefore, no glyphs need to accommodate space for descenders that
extend below the baseline. The removal of the descender area results in a noticeably reduced distance between the
glyph baseline and the edge of the glyph-space in the AC Mono font compared to ASCII/English fonts (Figure 2),
allowing for a more consistent line height, providing better options for vertical spacing between rows when coding.

http://www.digitalhumanities.org/dhq/vol/17/2/000699/resources/images/figure01.png

24

25

26

27

28

Figure 2. Font design comparison between Everson Mono, Consolas, and AC Mono, the English glyphs
selected here are chosen for their visual similarity to the Nehiyawewin syllabics, they are not representative of
English pronunciations or linguistic function.

Software: acahkasinahikana punctuation and numeracy

A more significant challenge is how to support specific programming tasks using limited punctuation and, preferably, an
alternative numeric symbology. Programming nomenclature and notation have had a unique evolution and, as Arawjo
notes, have developed in “concert and conflict with discretizing infrastructure[s]” [Arawjo 2020]. Without getting into a
long history lesson on programmatic notation, I have seen how my own programming practice evolved from coding in
BASIC, using very little punctuation except the double quote and round brackets, to today, where I predominantly use
C# and Java that, use nearly every non-numeric and non-alpha character on the standard keyboard. In today’s
programming culture, it is rare to see a programming language not use every symbol and character on the keyboard.
Notation marks that currently have meaning and function in many modern programming languages can be problematic
when developing solutions for Indigenous orthographies that traditionally do not use these marks.

As I mentioned earlier, the only punctuation commonly found in Nehiyawewin text is the full stop syllabic that looks like a
lowercase “x” but is actually U+166E (᙮); and the hyphen “-” most often used to separate certain morphemes or break
up very long sentence-word constructions when reading. My understanding of this lack of punctuation stems from my
understanding of Nehiyawewin morpheme structures that provide the necessary context and grammatical positioning in
its word construction, making punctuation usage unnecessary, except to indicate the end of thought or discussion
[Wolfart 1973] [Okimasis and Wolvengrey 2008].

Another point of consideration between western culture and Nehiyaw culture is numeracy. Much of the world uses the
ten symbols of the Hindu-Arabic decimal number system to represent numbers. Though Nehiyaw numeracy has
become pretty much forgotten in favour of Hindu-Arabic numerals, Nehiyaw culture did develop a way to represent
numbers using the syllabic glyphs (Figure 4). Furthermore, from a language perspective, Nehiyaw culture has
developed certain relationships to numbers and numeric meanings that are often associated with Nehiyaw ontologies,
as exemplified previously in my explanation of the meaning of Nehiyaw as the four-bodied people.

Punctuation Symbols:

A simple but effective example of a traditional programming style that would execute a print-to-screen command might
look like this:

print("hello world");

In this example, the parentheses mark the start and end of the function contents, and the double quotes mark the entry
and exit points of the text to render to the screen.

So how would a programmer make this indication if there are no brackets or quotation marks? Another common symbol
in modern programming languages is the semi-colon (;) as an instruction separator or terminator. Again, how does a
programmer indicate where to terminate an instruction without this mark? These orthographic punctuation devices have
become so commonplace in modern programming that it is difficult to envision not having access to them. It is precisely

http://www.digitalhumanities.org/dhq/vol/17/2/000699/resources/images/figure02.png

29

31

32

33

30

these kinds of practices that I have attempted to overcome in developing Ancestral Code. My intent here is not a need
to use minimal punctuation. Instead, it is a resistance to adopting marks and practices that belong to other languages.
To that end, one of the first steps I took was to inventory the Nehiyaw syllabary and functional language glyphs. I then
established a list of necessary programmatic functions and decided on the syllabic symbols for my programming
language.

To start this investigation, I started with the most straightforward programming language I know — BASIC. I used a
variety of dialects of BASIC for nearly fifteen years, and upon reflection, it was one of the languages that I could use
with the least amount of punctuation. BASIC also provides a good starting point for just “reading” code as if it were a
recipe or short story. It also helped me identify the bare necessities I felt Ancestral Code required. In the end, I came to
the following general determinations to make language development easier. These initial determinations were primarily
based on my Indigenous Computing Design’s resistance to western computing reliance on non-alpha characters:

With this software side of the orthography resolved, I looked at the next obstacle: how should the user input code?

Hardware: the acahkasinahikana keyboard

The history of print cultures has led to privileging western “stories, voices, and values” [Risam 2018, p. 89], and modern
coding cultures and computer language development have naturally adopted. Though Nehiyawewin can be typed on
“standard” keyboard layouts using a Romanized orthography, this seemingly innocuous accommodation is probably the
number one contributor to the continued erosion of Indigenous culture and language in the digital age.

Initially designed for English typewriters in the mid-to-late 19th century, the International Standards Organization
officially adopted the QWERTY keyboard layout in 1971, becoming “the de facto Standard layout for Communications
and computer interface keyboards” in 1972 [Noyes 1983]. Over the last 50 years, the ISO Standard has evolved as our
communication technologies have, and ISO 9995-9:2016 now includes definitions for multilingual and multiscript
keyboard layouts [International Standards Organization 2016]. However, these standards still assume that most
languages can be represented with a Latin alphabet. The ISO Standard clearly states that it “is intended to address all
characters needed to write all contemporary languages using the Latin script, together with standardized Latin
transliterations of some major languages using other scripts” [International Standards Organization 2016]. This
assumption that “all contemporary languages” can be written using a Latin character set is the type of colonial coercion
that continues to institute western ideologies as dominant.

Regarding computing, our experiences are configured and guided by technology design philosophies that do not always
include a combined understanding of “people, technology, society, and business” [Norman and Tognazzini 2015]. By
working with members of my community, my Ancestral Code project has allowed me to explore keyboard designs that
can better represent Nehiyawewin and Nehiyaw culture when entering syllabics into the computer. I aimed my design
objectives at challenging assumed western standards by investigating the role of the keyboard as an input device, and

The Unified Canadian Aboriginal Syllabics block of the Unicode Standard currently contains 640 symbols.
However, my dialect of Plains Cree only uses 107 syllabics from a total block of 134 glyphs that could be
used in Nehiyaw speech. So the remaining 533 symbols from the syllabary became potential candidates to
fulfill those programmatic roles where western punctuation is usually employed.
Ancestral Code will be line-driven. In other words, the linefeed/carriage return is the primary instruction
terminator. Using the linefeed, makes parsing of instructions easier.
The full stop symbol (᙮) is used to terminate and exit code (especially within a loop). Being the only
punctuation mark, its function and use needed to make sense in the narrative flow of the source code.
Language-based reserved words are used to mark code start and end positions instead of braces or other
symbols. For example, in Visual Basic IF and END IF mark the start and endpoints of a conditional code
block; similarly, sipiy and âniskôsîpiy perform the same roles in Ancestral Code.
In Ancestral Code, Nehiyawewin syllabic-numerals replace Hindu-Arabic numbers. Hindu-Arabic numerals
will be allowed, but only in SRO mode, and a built-in calculator will convert Hindu-Arabic numbers to their

appropriate syllabic representations when in syllabic mode.[5]

34

how such devices can support Nehiyaw cultural pedagogy and improve the relationships between the user, their
language (i.e., Nehiyawewin), and the computer. Though Nehiyaw syllabics are taught in several ways, one popular
method is the arrangement of the Nehiyawewin syllabary into a star design, often referred to as a Cree syllabic star
chart (Figure 3). This design is used often in teaching syllabics and contains several culturally specific teachings. For
example, as a student at University nuhelot’ine thaiyots’i nistameyimâkanak Blue Quills, my favourite syllabic “origin-
stories” were about the “ᒐ” syllabic, described as being symbolic of the pipe used in Nehiyaw ceremony, “ᐱ” is a
medicine lodge (i.e., tipi), and “ᑕ” can be interpreted as the toe of a moccasin. Whether or not these story sources are
the true inspirations for the initial syllabic creations, I recognize the importance the visual imagery of syllabics holds and
how they are intricately tied to cultural representations and understandings. Furthermore, due to the reflected and
rotational arrangement and orientation of Nehiyaw syllabics, these teachings cannot be represented using the modern
four-row keyboards used for typing in western computing.

Figure 3. My own Nehiyawewin syllabic star chart.

I feel that a keyboard or input device that uses this Nehiyaw star layout is culturally significant, meaningful to a Nehiyaw
user, and therefore appropriate for capturing Nehiyawewin. Through my iterative design process for the Nehiyawewin
keyboard, I critically evaluated everything from the keycaps to the printed circuit boards (“PCB”). During this process, I
created five distinct designs to retain cultural associations, allow efficient syllabic entry, and have practical usability for
typing everyday documents. I found the star design keyboard was best suited as the primary interface for coding with
Nehiyawewin in the Ancestral Code programming environment (Figure 4). Similarly, testing these designs with
Nehiyawewin language-learners, users found typing syllabics with a “star” keyboard easier than QWERTY layouts
because of the grouping of syllabic sounds in each of the four quadrants establishes a mental-map making locating
syllabics by sound easier. For example, all the “i” syllabics are located in the keyboard's top left and top vertical. This

http://www.digitalhumanities.org/dhq/vol/17/2/000699/resources/images/figure03.png

35

relationship between spoken language, computer language, and teachings of the syllabic orthography is meaningful and
is one that I feel is better supported by a device derived from Nehiyawewin pedagogy.

Figure 4. One of my proposed Nehiyawewin “Star Chart Keyboard” designs.

Bringing Nehiyawewin characteristics to a programming language

With the formalities of the orthography addressed, I progressed to investigating how to engage with Nehiyawewin
programmatically. I initially approached this project with a very naive and western mindset. I considered common
modern computing ideas and abstractions that included variables, data types, loops, conditional branching, and
linear/sequential instructions (i.e., lines of code), and embarked on a journey to convert their English versions to
Nehiyawewin. Thinking that some of these concepts would easily convert from English to Nehiyawewin, I quickly
realized that this approach of language substitution in Nehiyawewin would not work. As I discovered on my first day as a
Nehiyawewin student, Nehiyawewin technically does not have a word for “computer,” let alone any of the programming
concepts I was hoping to capture. Technological words in English like programming, network, and protocol I found were,
for the most part, “non-translatable” to Nehiyawewin, at least not a way I could use in developing a programming
language. Today, finding appropriate Nehiyaw cultural meanings that can map to technological terminology remains the
biggest challenge in developing the Ancestral Code project as a fully Nehiyawewin-privileged computing platform.
Nevertheless, I took these challenges with language and formulated an approach that involved finding easily
translatable concepts (if they existed), and borrowing from Nehiyaw language construction and word forms to create a
unique coding paradigm.

Translating Nehiyawewin

http://www.digitalhumanities.org/dhq/vol/17/2/000699/resources/images/figure04.png

36

37

38

39

40

41

42

43

44

What is a computer? I asked the most knowledgeable person in my Nehiyaw class, the Elder. That conversation went
something like this:

Me How do you say computer?

Elder Well, that depends. There really is no word for computer, but some people use
masinatakan cikastepayicikanis.

Me What does it mean?

Elder Masinatakan means to type or write, but actually comes from words that mean “using a
tool to create or stamp a mark” and cikastepayicikanis is the word we use for TV, it comes
from a word about shadows so something like “making a shadow, or full of shadows, or a
box of shadows.” You can interpret these words together as “making marks in a box of
shadows without a pen.”

Me Uh-huh… Ayhay.

I note that this was not an isolated occurrence. “Well, that depends. There really is no word for [insert word],” was a very
common response to almost anything “western” in my classes and applied to most modern technologies like radios,
televisions, and cell phones. Depending on whom you asked, there are as many ways to describe these modern

contraptions as there are dialects of Nehiyawewin. However, I accept and now use mâmitoneyihcikanihkân [6],
suggested by Wayne Jackson, an esteemed Nehiyaw language expert and Nehiyawewin professor at University Blue
Quills. As explained to me, this word is understood to mean “artificial thought/brain.” I choose this definition over
masinatakan cikastepayicikanis because I feel it better conveys the essence of what a computer is. I find that

masinatakan cikastepayicikanis [7] is more about describing the computer as a physical, non-animate object of utility
than the more conceptual or abstract and humanized idea of what a computer is. After all, we as a species have a
considerably long history of relating technologies to aspects of being human [Travers 1996, p. 57], and
mâmitoneyihcikanihkân suits this tradition.

Finding suitable replacements for some of the more programming-specific lingo such as integer, float, string, array,
variable, subroutine/function, do/while, for/next, and if/then proved to be highly problematic. These concepts either do
not translate easily, can only be translated in a general sense, and/or require a broader context. And, in most cases,
they cannot be translated without simplifying their meaning. Additionally, these concepts can only be translated by
conversation and engagement with community members, fluent speakers, and Elders with the required experience and
knowledge.

My solution to this particular challenge was one of metaphoric application rather than translation. I credit Hawai’ian
game developer and computer programmer Kari Noe for introducing me to this philosophical change. Noe was a
member of a Ōlelo Hawai’ian programming team engaged with translating C# into Hawai’ian [Muzyka 2018]. She
described the “if/then/else” statement as an example where the “if/then/else” statement does not make sense when
translated from English to Hawai’ian. The programming team consulted with native Hawai’ian speakers and community
members to find meaningful terms that could be both culturally appropriate and programmatically practical. The result
for “if/then/else” becomes muliwai, the Hawai’ian word for “river”. The idea of rivers being able to branch from the main
waterway and eventually rejoin the main river later provided a better conceptualization of a Hawai’ian context than the
English “if/then/else” statement. This culturally-aware solution in their language was not only inspirational but
fundamentally altered how I was approaching the relationships between computing concepts and cultural relevance.
Though I recognize that Hawai’ian peoples’ relationship with water is considerably different from those of the Indigenous
peoples of the Americas, water is no less important. In Nehiyaw culture, water is a medicine, a provider of life, and is
sacred. Therefore, I have come to use “river” as a conditional branch command. In Nehiyawewin river is sîpiy, and with
this root I can then branch an “if” into sîpîsis, a “small river” or “creek” in English. Therefore, a code example might look

45

46

like the following examples:

ᐊᓱᐘᐦᐁᐤ ᐃᔨᓂᒥᐣ ᒦᓂᓯᐘᐟ
 ᓰᐱᐩ ᑭᑿᐩ ᐲᐦᒋᔨᕽ ᒦᓂᓯᐘᐟ
 ᓰᐲᓯᐢ ᐃᔨᓂᒥᐣ
 ᐊᓱᐘᐦᐁᐤ ᐊᔫᐢᑲᐣ ᒦᓂᓯᐘᐟ᙮
 ᓰᐲᓯᐢ ᐊᔫᐢᑲᐣ
 ᐊᓱᐘᐦᐁᐤ ᐃᔨᓂᒥᐣ ᒦᓂᓯᐘᐟ
 ᐋᓂᐢᑰᓰᐱᐩ
 ᓰᐱᐩ ᑮᓯᐸᔨᐤ

Example 1. A series of conditional branch commands in ᐊᒋᒧ

asiwahew iyinimin mînisiwat
 sîpiy kikway pîhciyihk mînisiwat
 sîpîsis iyinimin
 asiwahew ayôskan mînisiwat.
 sîpîsis ayôskan
 asiwahew iyinimin mînisiwat
 âniskôsîpiy
 sîpiy kîsipayiw

Example 2. Example 1 in SRO (Cree#)

put the blueberries in the berry bag
 [start] a river, what is [in] this bag?
 [start] a creek [for] blueberries
 put a single raspberry in the berry bag.
 [start] a creek [for] a raspberry
 put the blueberries in the berry bag
 join the river
 the river ends

Example 3. The literal English translation of the code block from Example 1 or Example 2

In this example, the first “creek” ends with mînisiwat᙮[8] where “᙮” terminates and subsequently ends the “river-if”

statement. The second “creek” ends with âniskôsîpiy[9] or “rejoin the river,” and in this case, it would continue to the
following statement in the “if” code block. In this way, the “if” statement is fluid. It can branch, terminate, or rejoin the
original, reflecting a natural flow or progression.

Understanding computer functions in these cultural terms provides a more Indigenous method of relating to the
machine. In addition, defining programmatic operations using culturally meaningful metaphoric terminology changes the
process of keyword translation to a process of knowledge adaptation, ensuring that a Nehiyaw programmer does not
need to language-switch between Nehiyawewin and English to have the computer perform its tasks. Looking at a
computer’s code from this metaphoric perspective can also be extended to the binary level of the machine, where a
Nehiyaw worldview can reframe the binary understanding of 1 and 0 as animate and inanimate.

Nehiyaw language construction

48

49

50

51

52

47I felt that morphemes and free word order were characteristics of Nehiyawewin that offered strong potential for
programmatic versatility though they did offer some unique challenges.

Morphemes

Nehiyawewin is intensely metaphoric and descriptive and is a polysynthetic language, meaning the language combines
many morphemes, often resulting in lengthy sentence-word constructions [Shirt and Wellman 2022]. A morpheme is a
single linguistic unit of meaningful speech. For an English example, without focusing too much on etymology, the word
“code” from the Latin codex can add different suffixes to alter its meaning. One such ending is “-ing” to change it to
coding, representing an active verb. Another is “-er” to change it to coder, which is a noun meaning “a person who
codes”, and both could be structured in a sentence as “the coder is coding.” These suffixes are morphemes.

A fun example that illustrates how Nehiyawewin morphemes are stringed together is the word for “hippopotamus.”
Nehiyawewin does not have an actual word for hippopotamus because this animal is not native to the Americas, and
therefore it is described in language using its most prominent features. In Nehiyawewin, as described by Nehiyaw Elder
Solomon Ratt, a hippopotamus is called kihci-kispakasakewi-mistipwâmi-mahkitôni-nîswâpitewi-atâmipeko-pimâtakâwi-
kohkôs or in English as “great, thick-skinned, big-thighed, big-mouthed, two-toothed, underwater, swimming, pig ” [Ogg
2019].

Another interesting example is the Nehiyawewin translation for the English word “pony”. In Nehiyawewin, the word atim
[10] is the word for dog. When you prefix atim with mist- from the word mistahi-, which means “[something] is
great/large/big,” the resulting word mistatim is formed, which can mean “big dog,” but is more commonly used to mean
“horse.” Adding the diminutive suffix –osis, meaning “[something] is small or little,” to atim, the result is acimosis
meaning “little dog” or “puppy.” We can go one step further and combine all three of these ideas to get mistacimosis.
The resulting understanding is a “small horse” or “pony.” Though one could argue it also means a “very big puppy,” the
context would clarify what the speaker is referring to.

For Ancestral Code, I used these bound morphemes of mistahi- and -osis as ways to make variables increase or
decrease in value (i.e., size), even though they may not be semantically or syntactically correct in Nehiyawewin speech.
So, for example, using a numeric variable called atim, you can use the following statement:
atimosis
This is equivalent to the more traditional coding representation of:
atim = atim - 1;
This usage carries the meaning of “increase the size of ‘the dog’ and reduce the size of ‘the dog’” or “make ‘the dog’
bigger then smaller.” In this example, the variable “atim” has “some value” manipulated through a single morpheme-
constructed token instead of a more common calculation assignment in other programming languages delimited by
spaces to separate each programmatic token. Not to mention the problem with translating the syntax of atim = atim
+ 1 as an assignment command and not a logical statement into Nehiyawewin.

Free Word Order

Free word order means words in a sentence do not necessarily need to be in a rigid sequence. This ordering is
especially apparent in something like “the cat sees the dog”; whereas, in English, you cannot swap “the cat” and “the
dog” without changing its meaning, as in “the dog sees the cat.” However, this is not the case in Nehiyawewin, where

minôs wâpamew atimwa[11] and atimwa wâpamew minôs mean the same thing. This language use is because there is
a third-person obviative -wa attached to atim, indicating the dog atim is the object being acted on regardless of where it
appears in the sentence in relation to the cat. To say this sentence in English requires modifying the verb to clarify who
or what is seeing and identifying who or what is being seen. This sentence is a simplistic example, but as the coding
environment for Ancestral Code was designed to be written as a narrative, having this flexibility is something I wanted to
be able to use because it is non-linear and changes our perceptions of coding in line-by-line formats. A simple coding

example would be the completion command for sîpiy, sîpiy kîsipayiw[12]. In this case, sîpiy kîsipayiw and kîsipayiw
sîpiy mean the same thing. Although, as a coder, I can use “end river” or “river ends,” it does not matter the order of the

53

54

tokens as they are not fixed. A more expanded example uses this same idea but applies to whole lines or activities, as
in a looping construction where a character such as Wîsahkecâhk might walk, hop, and talk:

ᐱᐳᐣ
 ᐃᔀᑫᒐᕽ ᐱᒧᐦᑌᐤ
 ᓇᐸᑌᒁᐢᑯᐦᑎᐤ ᐃᔀᑫᒐᕽ
 ᐃᔀᑫᒐᕽ ᐄᑭᐢᑵᐤ

Example 4. Free word order in in ᐊᒋᒧ

pipon
 Wisakecahk pimohtew
 napate-kwâshohtiw Wisakecahk
 Wisakecahk pîkiskwew

Example 5. Example 4 in SRO (Cree#)

for one winter
 Wisakecahk walks
 hop Wisakecahk
 Wisakecahk speaks

Example 6. The literal English translation of the code block from Example 4 or Example 5

When this block of code runs, the lines that follow pipon are “randomized” as it is not essential which order those
actions execute, as long as the “Wîsahkecâhk” object variable performs all three actions in this block. By comparison,
an equivalent representation of this code in C# might look like this:

int winter = 1;
do {
 Random r = new Random();
 string[] actions = new string[] { "walk", "hop", "speak" };
 actions = actions.OrderBy(x => r.Next()).ToArray();
 foreach (string doAction in actions) {
 makeWisakecahk(doAction);
 }
 winter--;
} while (winter == 1);

The Ancestral Code keyword for a “do loop” is pipon[13], which translates as “a winter.” In the next section, I will
elaborate on the meaning and cultural significance of the reserved word pipon. But, for this example, if I wanted to
perform these actions in sequence and not a random order, I would not bother using the pipon loop. You may also
notice that the lines that direct the “Wîsahkecâhk” variable to do an action (see Example 4, Example 5, or Example 6)
are in free word order in the Ancestral Code example (as in Wîsahkecâhk walks and hop Wîsahkecâhk). Unlike
many programming languages that must start with a command or keyword followed by variables or parameters, this is
not necessary for Ancestral Code, as long as the variable and command are on the same executing line. The
programming parser, the part of the programming environment responsible for separating lines of code into smaller

56

57

58

55

elements and individual instructions, will still be able to discern the token from the data, regardless of the position of
each in the line. In the next section, I will detail the reasons behind this built-in randomization. Still, in terms of
programming language construction, using features of morphemic commands and free word order, are a means to
describe the relationships between the programmatic structures of Ancestral Code and Nehiyaw culture.

Culture and language == code && code == culture and language

Language plays a significant role in the enterprise of computer programming, and these activities are still heavily
informed by western culture. Consequently, it is challenging to envision programming as anything but a socio-technical

subculture populated with hordes of Benjamin Nugent’s Lewis Skolnick-esque Type-1 “nerds” [Nugent 2008, p. 5].[14]

This stereotyped and generalized view of programmers and programming was the last challenge I aimed to
“reformulate,” to introduce Indigenous cultural practices as digital metaphorical structures that view programming from
Indigenous epistemological and ontological concerns that alter how programming is perceived in its current western
context. For example, I admire how Ramsey Nasser describes the algorithms depicted in the Arabic calligraphic forms
of his قلب programming language “as high poetry” [Nasser 2012]. I also found that describing western computing ideas in
Nehiyawewin often resulted in algorithmically poetic word creations, as evidenced with the concept of “river” to
represent “if/then” logic. I expand on this analogy-based token use for representing programmatic instructions by
applying the same metaphoric treatment to culturally specific understandings as a way of genuinely viewing computer
programming as a non-western endeavour. Through this reimagining of computing terms, I highlight how computing
concepts already reflect Indigenous cultural teachings, practices, especially ceremony, as I demonstrate in the following

specific examples of miyâhkasike[15], pipona[16], and waniyaw [17].

Miyâhkasike and Tisamân

One of the most common and essential cultural practices in Nehiyaw culture is the smudge. A smudge is a small,
personal ceremonial practice where the burning of an Indigenous medicinal herb such as sweetgrass or sage is used to
“cleanse” and “purify” the individual. When smudging, people pass their hands or objects to be “blessed” through the
rising smoke trails. In a normal smudge, you use your hands to draw the smoke towards you – blessing your head, ears,
eyes, mouth, heart, and body with the smoke. And then, you “bless” anything else you wish to be cleared of negative
energies, such as food, tobacco, eyeglasses, or even your laptop. Essentially, smudging is responsible for blessing
anything that can affect any of your four spirits. I have even heard stories from several Nehiyaw and Métis Elders that
have physically smudged their laptop to purify it before “Googling.” In the context of ceremony, this idea of “cleansing” is
something that computers do regularly. Whether it is emptying the trash bin, clearing memory, resetting the graphics
display, or deleting a browser’s cache, the intent of all these activities is to remove items that can negatively affect the
system’s operation. Therefore, the first command in an Ancestral Code program is miyâhkasike which is “to smudge

with sage/sweetgrass,” or tisamân[18], which is “to smudge (in general),” both serve the same purpose of preparing the
system. The choice of which smudge command to use is up to the programmer. However, I personally feel that a
program that relates a sacred story or contains culturally specific or significant knowledge in the code would start with
miyâhkasike, being more purposeful than the more generic tisamân. These “smudging” operations include, but are
not limited to, clearing any current output on the screen, clearing and readying the program’s libraries and variables,
and clearing any cache from a previous execution.

Miyâhkasike is an essential piece of code because not only does it have a very real programmatic purpose, but to have
the system digitally mirror a user’s physical ceremonial practice transcends the system. It also symbolically provides the
computer a “spirit” that the user can relate to as more of a living being instead of seeing the computer as a subordinate
spiritless instrument. From an Indigenous perspective, this kind of human-machine connection is one of collaboration
and kinship, and has been explored by several Indigenous scholars and artists [Noori 2011] [L’Hirondelle 2014] [Lewis
et al 2018].

Pipon

Pipon literally means “winter.” It, and its plural form pipona, along with the lexically related words pipohki (next winter),

59

60

61

62

awasipipon (last winter), and mesakwanipipon (every winter)[19] are used in Ancestral Code as “for loops.” Pipon
describes the single execution of a group of lines, and pipohki, awasipipon, and mesakwanipipon are sub-
functions that can only occur inside a repeating pipona loop.

You may ask why use pipon as a metaphor for the programmatic “loop?” Could you not use nîpin (summer) since it also
occurs annually? What makes pipon important is its significance to aging and identity in Nehiyaw culture. For example,
in Nehiyawewin, I say, “I am currently 49 winters old.” As heard from respected Nehiyaw culture and language instructor
Reuben Quinn, we use “winter” and not another season because back in the days before “comfortable housing” in the
northern climes of what is now Canada, surviving winter signified your resilience and survival of the most extreme
elements of Earth Mother [Quinn 2021]. Surviving winter is a valued and personal accomplishment. The symbolism in
“winter” as a programming keyword lies in its representation as a repeatable cycle and in its relationships to aging and
resilience that naturally imply increased experience and knowledge. So, similar to when a western-formatted computer
program loops through a series of instructions, it often builds upon previously executed statements — the loop “ages” as
it progresses and continues until the loop conditions are met or terminate.

Waniyaw

Waniyaw is a word that can be used for meaning “at random.” In Ancestral Code, it is a way to simulate the dynamic
and unpredictable forces of the natural world. Randomization is fundamental to Ancestral Code because of the
generative nature of the outputs it creates. From a cultural perspective, I want the visual outputs to have aspects that
are arbitrary and not controllable by the programmer. This environment of chance reflects the aspects of nature we
cannot control. Therefore, giving the system some autonomy and decision-making is one way to prevent the
programmer from always having complete control. In Nehiyaw culture, it is necessary to allow nature to run its course or
recognize that there are elements in our world beyond the individual’s control.

Randomization

In addition to the reserved keyword waniyaw, the words pipon, mihcecis, mihcet, mihcetinwa[20], and the bound
morpheme misi- incorporate randomization events in one form or another.

So, for example, if the programmer wants a statement or series of statements to execute randomly, they would write it
like this:

waniyaw Wisakecahk pimohtew

Ancestral Code interprets this instruction as “have Wîsahkecâhk walk at a random interval.” If this instruction is in the
main body of the code, it will execute for random intervals from that point forward. If this instruction is inside a pipona
block, it executes randomly only for as long as that loop is active and ends when the loop ends. In this use, the
computer takes on the responsibility of “nature,” and each time the program is executed, the randomness introduced
with waniyaw in the code guarantees the output will always be unique. This uniqueness is similar to how a story is
never quite the same when repeated, even by the same storyteller.

Conclusion

pipon – is the instruction for “do once” or literally “for one winter,” and all lines of code that proceed it are
executed in random order until the “᙮ ” full stop is encountered.

mihcecis – means “small many” and is used to produce a random number between 100 and 1,000.

mihcet – means “many” and is used to produce a random number between 1,000 and 100,000.

mihcetinwa – means “numerous” and is used to produce a random number between 100,000 and 1
million.

waniyaw – is used in the context of the entire program or within a pipona loop block.

63

64

65

66

67

When it comes to coding in any of the thousands of computer programming languages available, a programmer is
obliged to subscribe to and accept the social, technological, and cultural attitudes that created that language. Ancestral
Code, is no exception, in that it is formulated to be more accessible to Nehiyaw users. However, in contrast to other
(i.e., more common/traditional) computing languages, Ancestral Code is built on specific Nehiyaw cultural principles and
not necessarily the lineal or logical requirements defined by the system. This difference means that Ancestral Code’s
model and programming paradigm can alter computing philosophies and create new opportunities and avenues for
Indigenous computer programming pedagogy.

“Survivance,” as defined by distinguished Indigenous cultural theorist Gerald Vizenor, is “an active sense of presence,
the continuance of native stories, not a mere reaction, or a survivable name. Native survivance stories are renunciations
of dominance, tragedy and victimry” [Vizenor 2008, p. 1]. As a project, my intention in creating Ancestral Code was to
make a system capable of collaborating with Indigenous knowledges to create a uniquely Indigenous experience within
a digital space born from western computational sciences. Through a wholistic and Indigenous approach to computer
programming, I have revealed that there can be a deep connection in the human-computer relationship paradigm, one
that can advance programming practices to be more culturally informed while remaining relevant and critical to the
survivance of Indigenous language and culture.

Using theoretical wholistic Indigenous design frameworks and culturally-determined computer programming language
like the ones I described in this article, I am encouraging deeper critical discussions on the socio-technical philosophies
of computer programming. Ancestral Code can be used as a template that seeks to harmonize cultural epistemologies
and ontologies with computing by redefining computing philosophies through a cultural lens. It is a project meant to take
a user on a voyage through Nehiyaw knowledges that have developed over millennia and have those knowledges
define the relationships and models of modern computing. This journey then changes the relationship from one of
“human-and-computer” to one that is “culture-and-computer.”

I feel this change in philosophy and approach to computer programming rewards both Indigenous and western
computing cultures. From my perspective, a programmer’s identity is heavily imbued with western computing practices
and personally meaningful relationships with software and the interaction with computing devices. This broadening and
augmenting of software and hardware architectures are worthy of further investigation, especially for the potential
benefits they can provide as a template for other Indigenous communities who wish to advocate and explore their
cultural languages and teachings as programmatic interfaces.

Glossary

Standard Roman
Orthography

IPA (Pronunciation) Meaning

âcimow ʌtʃɪmow [s/he] narrates [her/his] own story

acimosis ʌtʃɪmʊsɪs small dog; puppy

âniskôsîpiy aːnɪskoːsiːpij following the river; rejoin the river

atim ʌtɪm a dog

atimwa wâpamew minôs ʌtɪmwʌ waːpʌmew mɪnoːs the dog + is seen by + the cat

awasipipon ʌwʌsɪpɪpʊn last winter

kîsipayiw kiːsɪpʌyiw [something] ends or terminates

mâmitoneyihcikanihkân maːmɪtonejɪhtʃikanɪhkaːn computer; artificial brain

masinatakan
cikastepayicikanis

mʌsɪnʌtʌgʌn
tʃɪkʌsteːpajɪtʃikʌnɪs

computer; box of shadows

mesakwanipipon meːsʌkwʌnɪpɪpʊn every winter or every year

mihcecis mɪhtʃeːtʃɪs several

mihcet mɪhtʃeːt many

mihcetinwa mɪhtʃeːtɪnwʌ a lot; numerous

mînisiwat miːnɪsɪwʌt a bag used for berry picking

minôs mɪnoːs a cat

mistacimosis mɪstʌtʃɪmʊsɪs a pony

mistahi mɪstʌhɪ [something] is big or large

mistatim mɪstʌtɪm a horse; or a large dog

miyâhkasike mijaːhkʌsɪgeː [s/he] smudges with sweetgrass

nehiyaw neːhɪyʌw a Cree person; Cree culture

nehiyawewak neːhɪyʌweːwʌk Cree people (plural)

nehiyawewin neːhɪyʌweːwɪn Cree Language

nîpin niːpɪn summer time

nitâpân nɪtaːbaːn my great grandparent (grandmother)

nohkompân nʊhkʊmbaːn grandmother + passed on

pipohki pɪpʊhkɪ next winter

pipon pɪpʊn winter

pipona pɪpʊnʌ winters (plural)

sîpihkomipit siːpɪhkʊmɪpɪt bluetooth

sîpîsis siːpiːsɪs creek (small river)

sîpiy siːpij river

tisamân tɪsʊmaːn smudge

waniyaw wʌnɪyʌw at random; at a random time

wâpamew waːpʊmew [s/he] sees [her/him]

wîsahkecâhk wiːsʌhkeːtʃaːhk cultural teacher and legendary figure in Nehiyaw
culture

Table 1. Standard Roman Orthography, IPA (Pronunciation), and Meaning of Nehiyawewin

Appendix

Hindu-Arabic Numbers Nehiyawewin Syllabic-Numerals

1 - 10 l ll ᐅ lᐅ llᐅ ᐅᐊ ᐊ ᐊl ᐊll ᒥ
11 - 20 ᒥl ᒥll ᒥᐅ ᒥlᐅ ᒥllᐅ ᒥᐅᐊ ᒥᐊ ᒥᐊl ᒥᐊll ᓀ
21 - 30 ᓀl ᓀll ᓀᐅ ᓀlᐅ ᓀllᐅ ᓀᐅᐊ ᓀᐊ ᓀᐊl ᓀᐊll ᓂ
31 - 40 ᓂl ᓂll ᓂᐅ ᓂlᐅ ᓂllᐅ ᓂᐅᐊ ᓂᐊ ᓂᐊl ᓂᐊll ᓄ
41 - 50 ᓄl ᓄll ᓄᐅ ᓄlᐅ ᓄllᐅ ᓄᐅᐊ ᓄᐊ ᓄᐊl ᓄᐊll ᓇ
51 - 60 ᓇl ᓇll ᓇᐅ ᓇlᐅ ᓇllᐅ ᓇᐅᐊ ᓇᐊ ᓇᐊl ᓇᐊll ᑯ
61 - 70 ᑯl ᑯll ᑯᐅ ᑯlᐅ ᑯllᐅ ᑯᐅᐊ ᑯᐊ ᑯᐊl ᑯᐊll ᑲ
71 - 80 ᑲl ᑲll ᑲᐅ ᑲlᐅ ᑲllᐅ ᑲᐅᐊ ᑲᐊ ᑲᐊl ᑲᐊll ᑫ
81 - 90 ᑫl ᑫll ᑫᐅ ᑫlᐅ ᑫllᐅ ᑫᐅᐊ ᑫᐊ ᑫᐊl ᑫᐊll ᑭ
91 - 100 ᑭl ᑭll ᑭᐅ ᑭlᐅ ᑭllᐅ ᑭᐅᐊ ᑭᐊ ᑭᐊl ᑭᐊll lᒥᑕ

Table 2. Syllabic Numeracy Appendix (Numbers 1 to 100)

Notes
[1] Nohkompan – grandmother who is passed on

[2] Nitâpân – great-grandmother

[3] ᐊᒋᒧ âcimow – story

[4] The font can be found at https://www.evertype.com/emono/

[5] See the Syllabic Numeracy Appendix for more

[6] mâmitoneyihcikanihkân – one Nehiyaw word for computer, meaning artificial brain.

[7] masinatakan cikastepayicikanis – another Nehiyaw word for computer. Roughly, a book or writing in a box of shadows.

[8] mînisiwat – a berry bag.

[9] âniskôsîpiy – where a river converges.

[10] atim, mistatim, acimosis, mistacimosis – dog, puppy, horse, pony; respectively

[11] minôs wâpamew atimwa – the cat sees the dog.

[12] sîpiy, sîpiy kîsipayiw – river, and the river ends

[13] pipon – winter

[14] Lewis Skolnick, portrayed by Robert Carradine, is one of the primary characters from the 1984 film Revenge of the Nerds.

[15] Miyâhkasike – to smudge with sweetgrass or sage.

[16] pipona – winters (plural of pipon).

[17] waniyaw – random, or randomly.

[18] tisamân – to smudge (in general).

[19] pipohki, awasipipon, mesakwanipipon – next winter, last winter, every winter; respectively.

[20] mihcecis, mihcet, mihcetinwa – a few, many, a lot; respectively.

https://www.evertype.com/emono/

Works Cited

Abd-El-Barr 2009 Abd-El-Barr, Mostafa. (2009) “Topological Network Design: A Survey.” Journal of Network and Computer
Applications 32 (3): 501–9.

Abdelnour-Nocera, Clemmensen, and Masaaki 2013 Abdelnour-Nocera, José, Torkil Clemmensen, and Masaaki Kurosu.
(2013) “Reframing HCI Through Local and Indigenous Perspectives.” International Journal of Human–Computer
Interaction 29 (4): 201–4. https://doi.org/10.1080/10447318.2013.765759.

Absolon 2010 Absolon, Kathy. (2010) “Indigenous Wholistic Theory: A Knowledge Set for Practice.” First Peoples Child &
Family Review 5 (2): 74–87. https://doi.org/10.7202/1068933ar.

Aikin 2009 Aikin, Jim. (2009) “The Inform 7 Handbook.” https://www.musicwords.net/if/I7Handbook8x11.pdf.

Ali 2014 Ali, Mustafa. (2014) “Towards a Decolonial Computing.” In Ambiguous Technologies: Philosophical Issues,
Practical Solutions, Human Nature, 28–35. Lisbon, Portugal: International Society of Ethics and Information Technology.

Arawjo 2020 Arawjo, Ian. (2020) “To Write Code: The Cultural Fabrication of Programming Notation and Practice.” In CHI
’20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–15. Honolulu, HI.
https://doi.org/10.1145/3313831.3376731.

Ardley 2014 Ardley, Sean. (2014) “Why Are Monospaced Typefaces Used for Programming? (Answer (1 of 2)).” Quora.
https://www.quora.com/Why-are-monospaced-typefaces-used-for-programming/answer/Sean-Ardley.

Babaoglu et al 2006 Babaoglu, Ozalp, Geoffrey Canright, Andreas Deutsch, Gianni A Di Caro, Frederick Ducatelle, Luca
M Gambardella, Niloy Ganguly, Márk Jelasity, Roberto Montemanni, and Alberto Montresor. (2006) “Design Patterns
from Biology for Distributed Computing.” ACM Transactions on Autonomous and Adaptive Systems (TAAS) 1 (1): 26–
66.

Benenson 2012 Benenson, Yaakov. (2012) “Biomolecular Computing Systems: Principles, Progress and Potential.” Nature
Reviews Genetics 13 (7): 455–68.

Cormier and Ray 2018 Cormier, Paul, and Lana Ray. (2018) “A Tale of Two Drums: Kinoo’amaadawaad Megwaa
Doodamawaad – ‘They Are Learning with Each Other While They Are Doing.’” In Indigenous Research: Theories,
Practices, and Relationships, edited by Deborah McGregor, Jean-Paul Restoule, and Rochelle Johnston, 112–25.
Toronto, Canada: Canadian Scholars’ Press.

Dourish and Mainwaring 2012 Dourish, Paul, and Scott D Mainwaring. (2012) “Ubicomp’s Colonial Impulse.” In
Proceedings of the 2012 ACM Conference on Ubiquitous Computing, 133–42. Pittsburgh, PA: Association for
Computing Machinery, New York, NY.

Garneau 2018 Garneau, David. (2018) “Electric Beads: On Indigenous Digital Formalism.” Visual Anthropology Review 34
(1): 77–86.

Gradual Civilization Act 1857 Gradual Civilization Act. (1857) An Act to Encourage the Gradual Civilization of the Indian
Tribes in This Province, and to Amend the Laws Respecting Indians.

Hasselström and Åslund 2001 Hasselström, Karl, and Jon Åslund. (2001) “The Shakespeare Programming Language.”
6/6/2018. http://shakespearelang.sourceforge.net/.

Heaven 2013 Heaven, Douglas. (2013) “One Minute with...Ramsey Nasser.” New Scientist 217 (2909): 03–03.

International Standards Organization 2016 International Standards Organization. (2016) “ISO/IEC 9995-9:2016 -
Information Technology — Keyboard Layouts for Text and Office Systems — Part 9: Multi-Lingual, Multiscript Keyboard
Layouts.” ISO. 2016. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/43/54374.html.

Irani and Dourish 2009 Irani, Lilly C, and Paul Dourish. (2009) “Postcolonial Interculturality.” In , 249–52.

Irani et al 2010 Irani, Lilly, Janet Vertesi, Paul Dourish, Kavita Philip, and Rebecca E Grinter. (2010) “Postcolonial
Computing: A Lens on Design and Development.” In CHI ’10: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 1311–20. Atlanta, GA, USA: Association for Computing Machinery.

King 2022 King, Kevin. (2022) “Typotheque: Syllabics Typographic Guidelines and Local Typographic Preferences by
Kevin King.” Typotheque (blog). January 24, 2022.
https://www.typotheque.com/articles/syllabics_typographic_guidelines.

Kleinrock and Kamoun 1980 Kleinrock, Leonard, and Farouk Kamoun. (1980) “Optimal Clustering Structures for

https://doi.org/10.1080/10447318.2013.765759
https://doi.org/10.7202/1068933ar
https://www.musicwords.net/if/I7Handbook8x11.pdf
https://doi.org/10.1145/3313831.3376731
https://www.quora.com/Why-are-monospaced-typefaces-used-for-programming/answer/Sean-Ardley
http://shakespearelang.sourceforge.net/
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/43/54374.html
https://www.typotheque.com/articles/syllabics_typographic_guidelines

Hierarchical Topological Design of Large Computer Networks.” Networks 10 (3): 221–48.

Lewis et al 2018 Lewis, Jason Edward, Noelani Arista, Archer Pechawis, and Suzanne Kite. (2018) “Making Kin with the
Machines.” Journal of Design and Science. https://doi.org/10.21428/bfafd97b.

L’Hirondelle 2014 L’Hirondelle, Cheryl. (2014) “Codetalkers Recounting Signals of Survival.” In Coded Territories: Tracing
Indigenous Pathways in New Media Art, edited by Steven Loft and Kerry Swanson, 147–68. Calgary, AB: University of
Calgary Press.

Madden, Higgins, and Korteweg 2013 Madden, Brooke, Marc Higgins, and Lisa Korteweg. (2013) “‘Role Models Can’t
Just Be on Posters’: Re/Membering Barriers to Indigenous Community Engagement.” Canadian Journal of Education 36
(2): 212–47.

Merritt and Bardzell 2011 Merritt, Samantha, and Shaowen Bardzell. (2011) “Postcolonial Language and Culture Theory
for HCI4D.” In CHI’11 Extended Abstracts on Human Factors in Computing Systems, 1675–80.

Milloy 2008 Milloy, John. (2008) “Indian Act Colonialism: A Century Of Dishonour, 1869-1969.” Research Paper. Canada:
National Centre for First Nations Governance.

Milloy 2017 Milloy, John S. (2017) A National Crime: The Canadian Government and the Residential School System. Vol.
11. Univ. of Manitoba Press.

Muzyka 2018 Muzyka, Kyle. (2018) “A Hawaiian Team’s Mission to Translate Programming Language to Their Native
Language | CBC Unreserved Radio.” CBC Unreserved Radio. November 30, 2018.
https://www.cbc.ca/radio/unreserved/indigenous-language-finding-new-ways-to-connect-with-culture-1.4923962/a-
hawaiian-team-s-mission-to-translate-programming-language-to-their-native-language-1.4926124.

Nasser 2012 Nasser, Ramsey. (2012) “قلب (‘Qalb’).” 2012. https://nas.sr/%D9%82%D9%84%D8%A8/.

Noori 2011 Noori, Margaret. (2011) “Waasechibiiwaabikoonsing Nd’anami’aami," Praying through a Wired Window": Using
Technology to Teach Anishinaabemowin.” Studies in American Indian Literatures 23 (2): 1–23.

Norman and Tognazzini 2015 Norman, Don, and Bruce Tognazzini. (2015) “How Apple Is Giving Design A Bad Name.”
Fast Company (blog). November 10, 2015. https://www.fastcompany.com/3053406/how-apple-is-giving-design-a-bad-
name.

Noyes 1983 Noyes, Jan. (1983) “The QWERTY Keyboard: A Review.” International Journal of Man-Machine Studies 18
(3): 265–81.

Nugent 2008 Nugent, Benjamin. (2008) American Nerd: The Story of My People. Simon and Schuster.

Ogg 2019 Ogg, Arden. (2019) “Hippopotamus in Cree: Solomon Ratt (y-Dialect).” Cree Literacy Network (blog). December
16, 2019. https://creeliteracy.org/2019/12/16/hippopotamus-in-cree-solomon-ratt-y-dialect/.

Okimasis and Wolvengrey 2008 Okimasis, Jean, and Arok Wolvengrey. (2008) How to Spell It in Cree: The Standard
Roman Orthography. misāskwatōminihk (Saskatoon): Houghton Boston, miywāsin ink.

Ormond-Parker et al 2013 Ormond-Parker, Lyndon, Aaron David Samuel Corn, Kazuko Obata, and Sandy O’Sullivan.
(2013) Information Technology and Indigenous Communities. AIATSIS Research Publications Canberra.

Philip, Irani, and Dourish 2012 Philip, Kavita, Lilly Irani, and Paul Dourish. (2012) “Postcolonial Computing: A Tactical
Survey.” Science, Technology, & Human Values 37 (1): 3–29.

Quinn 2021 Quinn, Ruben. (2021) “Intermediate ᓀᐦᐃᔭᐤ Language Lessons.” Zoom Course.

Risam 2018 Risam, Roopika. (2018) New Digital Worlds: Postcolonial Digital Humanities in Theory, Praxis, and Pedagogy.
Evanston, Illinois, US: Northwestern University Press.

Shirt and Wellman 2022 Shirt, Marilyn, and Tina Wellman, eds. (2022) Tânisîsi Kâ-Ôsîtahk Pîkiskwêwinisa : Morphology
Dictionary. St. Paul, AB: University nuhelot’ine thaiyots’i nistameyimâkanak Blue Quills.

Thomas 2005 Thomas, Robina Anne. (2005) “Honouring the Oral Traditions of My Ancestors through Storytelling.” In
Research as Resistance: Critical, Indigenous and Anti-Oppressive Approaches, edited by Leslie Brown and Susan
Strega, 237–54. Toronto, ON: Canadian Scholars’ Press/Women’s Press.

Travers 1996 Travers, Michael David. (1996) “Programming with Agents: New Metaphors for Thinking About Computation.”
Doctor of Philosophy, Cambridge, MA: Massachusetts Institute of Technology.

https://doi.org/10.21428/bfafd97b
https://www.cbc.ca/radio/unreserved/indigenous-language-finding-new-ways-to-connect-with-culture-1.4923962/a-hawaiian-team-s-mission-to-translate-programming-language-to-their-native-language-1.4926124
https://nas.sr/%D9%82%D9%84%D8%A8/
https://www.fastcompany.com/3053406/how-apple-is-giving-design-a-bad-name
https://creeliteracy.org/2019/12/16/hippopotamus-in-cree-solomon-ratt-y-dialect/

Unicode Inc. 2021 Unicode, Inc. (2021) “The Unicode Standard, Version 14.0.” Unicode, Inc.
https://unicode.org/charts/PDF/U1400.pdf.

Vee 2017 Vee, Annette. (2017) Coding Literacy: How Computer Programming Is Changing Writing. Mit Press.

Venne 1981 Venne, Sharon. (1981) “Indian Acts and Amendments, 1868-1975.” An indexed collection. University of
Saskatchewan Native Law Centre, Saskatoon.

Vizenor 2008 Vizenor, Gerald Robert. (2008) Survivance: Narratives of Native Presence. U of Nebraska Press.

Warschauer 1998 Warschauer, Mark. (1998) “Technology and Indigenous Language Revitalization: Analyzing the
Experience of Hawai’i.” Canadian Modern Language Review 55 (1): 139–59.

Wilson 2008 Wilson, Shawn. (2008) Research Is Ceremony: Indigenous Research Methods. Halifax, NS: Fernwood
Publishing.

Wolfart 1973 Wolfart, H Christoph. (1973) “Plains Cree: A Grammatical Study.” Transactions of the American Philosophical
Society 63 (5): 1–90.

Wolfart and Ahenakew 1993 Wolfart, H.C., and Freda Ahenakew, eds. (1993) Kinêhiyâwiwininaw Nêhiyawêwin. The Cree
Language Is Our Identity: The La Ronge Lectures of Sarah Whitecalf. Winnipeg, MB, CA: University of Manitoba Press.

Worden, Staszewski, and Hensman 2011 Worden, Keith, Wieslaw J Staszewski, and James J Hensman. 2011. “Natural
Computing for Mechanical Systems Research: A Tutorial Overview.” Mechanical Systems and Signal Processing 25 (1):
4–111.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

https://unicode.org/charts/PDF/U1400.pdf
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

