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Abstract

This study used three interdependent techniques to help understand the use and distribution of
syllabic values of the cuneiform signs during the second half of the third millennium and early
second millennium BCE. The results suggest that, during this period, cuneiform syllabaries were
variable. That variation can further inform us about the regional, temporal, and dialectical
contexts in which they existed. The addition of this research to the wider literature on the early
adaptation of cuneiform enhances the field's understanding of how cuneiform syllabic values
began to emerge and spread across the ancient Near East, and demonstrates how
computational methods of analysis can be applied to research questions in humanities subjects.

1. Background

Cuneiform is the earliest writing system attested in history, emerging towards the end of the fourth millennium B.C. in a
region of ancient Mesopotamia that corresponds with the southern part of modern-day Iraq. The population first
associated with cuneiform spoke an isolate language called Sumerian. However, Semitic-speakers who co-inhabited the
same region quickly adapted the script to write their own language, Akkadian. Akkadian is the earliest attested language
of the Semitic family, which includes better-known languages such as Arabic, Hebrew, and Aramaic.

The signs that made up this writing system consisted of four types: logograms (sometimes called ideograms), which
represented whole words or ideas; syllabograms, which represented whole syllables such as tu, ta, or ti; determinatives,
which were a set of signs that indicated, in limited circumstances, the category a word belonged to (i.e., gods, trees,
precious stones, personal names, etc.); and numerical signs, which belonged to either a decimal or sexagesimal
counting system (both systems were used simultaneously in ancient Mesopotamia). Each sign in these categories was
crafted by impressing one or more wedge-shaped markings with the aid of a stylus, usually made from a reed cut to
have a triangular tip, into the still soft surface of clay tablets (Figure 1). These clay tablets naturally dried and hardened
in the arid and hot climate, and as a result they survived in great numbers. This script survived for over 3000 years from
around 3300 BC to 70 AD and became the hallmark of Mesopotamian history and culture.

The spread of Mesopotamian culture from southern Iraq into neighboring regions, including northern Iraq, Turkey, and
Syria, coincided with the development of the cuneiform writing system, during the late fourth millennium and first half of
the third millennium BC. During the next few hundred years, this writing system was adopted by the populations outside
of Mesopotamia that were interacting regularly with Sumer and Babylonia primarily through trade. As the cuneiform
system developed and spread, it was adapted to express non-Sumerian words, including personal names. In general,
Akkadian and other languages adapted the cuneiform script by means of the same rebus principle used by Sumerian
cuneiform to express grammatical affixes [Cooper 1996, 45].
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Figure 1. An example of a cuneiform tablet (OSP 1, 131; left) and the line drawing of that tablet (right). Image
courtesy of the Cuneiform Digital Library Initiative (http://cdli.ucla.edu).

2. Introduction

In this studym, interdisciplinary techniques were used to answer questions about how the cuneiform script, the earliest-
attested writing system used between 3300 BCE and 100 CE in the ancient Near East, was adapted by Semitic-
speaking peoples across Mesopotamia and Syria. The earliest, but scarce, evidence of cuneiform signs being used
syllabically to write Semitic words and proper nouns comes from around 2600-2500 BCE. Between 2350 and 1800
BCE, there is an increase in the development and use of signs with syllabic values across Mesopotamia and Syria.
These syllabic values (together called “syllabaries”) continue to develop until standardizations of cuneiform signs and
their values begin to be enforced around 1800 BCE, which essentially ends any major variability in the script within
specific periods. This provides us with a period of almost 600 years, spanning the second half of the third millennium
and early second millennium BCE, during which there is a wealth of textual data documenting the first full adaptation of
the cuneiform script to syllabically write Semitic words and proper nouns. | investigated differences in the values of
cuneiform signs used to write Semitic words excavated from nine sites that produced cuneiform texts during the late
third millennium and early second millennium BCE in order to understand the extent to which any variation occurred.
This analysis of the variation could then inform other questions about dialect differences, educational practices, and
power dynamics across the region.

Individual studies of the signs attested with a syllabic value among the selected Syrian corpora form the basis of this
investigation. These studies aim to provide a clear, consistent, and complete description of syllabic value attestations in
Syria and Mesopotamia, and the information they provide is concatenated into a table of reconstructed syllabaries for
each site. Together, these reconstructed syllabaries form a pan-Mesopotamian dataset informed by the most current
knowledge of syllabic values attested at these sites during the roughly 600-year period being examined.

After curating a dataset of the syllabic values attested at each site, | analyzed the data using three complementary
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computational methods: phylogenetic estimation, hierarchical clustering, and principal component analysis (PCA).
These tools organized the data into visual hierarchies and identified the principal drivers behind the variation observed
in the data. The results strongly support the conclusion that geography and time are the most significant factors
affecting syllabic value observations across Mesopotamia, which indicated that during this period scribal communities
adapted the cuneiform script's syllabic system independently and continued to use their local syllabaries despite the
differences that any individual scribe encountered through his interactions with other communities across the region.
The results of the computational analyses then suggested directions of further inquiry: | examined the linguistic

environments of the syllabic values that most directly influenced the variation found in the datasetl?l. This component of
the research provided evidence for greater dialectical variation across the geographic region than was previously
assumed.

In summary, this research uses a series of three interdependent techniques to determine and understand the use and
distribution of syllabic values within the cuneiform writing system during the second half of the third millennium BC and
early second millennium BC. The results suggest that during this period cuneiform syllabaries are variable, and that
variation can further inform us about the regional, temporal, and dialectical contexts in which they existed. The addition
of this research to the wider literature on the early adaptation of cuneiform enhances the field’s understanding of how
cuneiform syllabic values began to develop and emerge across the ancient Near East, and demonstrates how
computational methods of analysis can be applied to research questions in humanities subjects.

3. Sites Examined

The aim of this study was to examine the spread and adaptation of syllabic signs used to write Semitic words and
proper nouns, so the sites initially considered for examination must have produced texts wholly or partially written in a
Semitic language or dialect. In the third millennium, there were 19 such sites, and ten of these have been chosen for
inclusion in this study due to the number of relevant tablets attested at each site and easy access (either electronic or
physical) to the tablets: Ebla, Mari, Nabada, Tuttul, Adab, Kish, Tutub, Eshnunna, Assur, and Gasurl®l. Sites were
excluded from this study if the entire collection of tablets is housed in Syria, Iraq, or Turkey, or if | was not granted
access to the collections housed in museums Europe.

By examining these texts, the syllabaries attested at each of these sites were reconstructed (except Ebla, see below) by
examining the published photos or transliterations of the texts of each site, and by examining a few of the tablets in
person that have not yet been sufficiently published. | have therefore relied on a combination of analog data, digital

data, and in-person examination of texts for the collation of the syllabaries of the sites included in this study.



. Nabada (Tell Beydar)

@ Tuttul (Tell Bi'a)
@ cbla (Tell Mardikh)

Assur (al-Shirgat) .
. Gasur (Nuzi)

. Mari (Tell Hariri)

. Enunna (Tell Asmar)

@ Tutub (Khafajah)

@ Kish (Tell al-Uhaymir)

. Adab (Bismaya)

Figure 2. The ten sites included in this study are Ebla, Mari, Nabada, Tuttul, Adab, Kish, Eshnunna, Tutub,
Assur, and Gasur.

The reconstructed syllabaries of Adab, Kish, Assur, and Gasur were collected using texts published on the Cuneiform
Digital Library Initiative’s database. The syllabary from Tutub was reconstructed using texts available both in the
Cuneiform Digital Library Initiative (CDLI) database and Sommerfeld’s (1999) “Die Texte der Akkade-Zeit. 1. das Dijala-
Gebiet: Tutub.” The data from Eshnunna was collected from texts published in Gelb’s (1952) “Sargonic Texts from the
Diyala Region” (MAD 1, nos. 1-195, 270-336.) and from the CDLI database. Many of these tablets are fragmentary and
retain few discernible lines of text.

For the Tuttul and Nabada corpora, | relied on the works of Krebernik [Krebernik 2001] and Ismail [Ismail et al. 1996]
respectively, as well as well-structured and collated digital data on the CDLI for both. Because of the size of the Mari
and Ebla corpora, limitations had to be imposed on the type of texts examined in the reconstruction of the syllabaries of
these two sites. For Mari, | have chosen to include only the texts published by Limet [Limet 1976] and for Ebla | only
consider the already-published syllabaries of the lexical texts [Krebernik 1982/3, 178-236] [Conti 1990, 3—60] and the

texts published on the Ebla Digital Archives. ]

The table below outlines the sites that are examined in this study. It includes the periods examined, the number of texts
used for the collection of the data, and the genres[6] attested among the texts included (plus the numbers within each
genre in parentheses). For all sites examined, the majority of the texts are administrative in genre, with a small number
being epistolary, literary, or lexical texts.
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Site Region Period(s) No. of Genres (no.)

Texts
Ebla Syria Old Akkadianl7] ca. Lexicall8]: Administrative Letter
7000
Mari Syria Ur i/ 463 Administrative (463)
Shakkanakkul€]
Nabada Syria Old Akkadian 223 Administrative (222); Legal (1)
Tuttul Syria Early Old 54 Administrative (51); Letter (2); Uncertain (1)
Babylonian[10]
Adab S. Mes. Old Akkadian, 1946, Administrative (1854, 102)[13]; Letter (27, 1);
(1] Urlil 130012] Royal/monumental (25, 21); Legal (22, 3); Uncertain

(16, 0); Lexical (1, 0); Mathematical (1, 0); School (1,
2)

Eshnunna  S. Mes. Old Akkadian 261 Administrative; Uncertain (26); School (8); Letter (6)I
Literary (1)

Kish S. Mes. Old Akkadian 80 Administrative (68); Letter (5); Royal/monumental (3);
Votive (2); Lexical (1); Literary (1)

Tutub S. Mes. Old Akkadian 73 Administrative (65); Royal/monumental (7); Legal (1)

Assur N. Mes. Old Akkadian 20 Royal/monumental (7); Lexical (6); Administrative (4);

[14] School (3)
Gasur N. Mes. Old Akkadian 220 Administrative (190); Lexical (15); Letter (9); Legal (2);

School (2); Mathematical (1); Uncertain (1)

Table 1. The ten sites examined for this study.

4. Methodology

4.1 Computational methods of analysis: a three-step approach

Three different methods of analysis were used to visualize this dataset. These three methods are phylogenetic
estimation, hierarchical clustering, and principal component analysis. Phylogenetic estimation was included because it
is a common method used in the study of language and manuscript evolution [Platnick and Cameron 1977] [Atkinson
and Gray 2005] and the results could therefore be more easily compared with previous studies. However, because of
the novelty of using phylogenetic systematics to understand writing system evolution, and because of the relative
inflexibility of phylogenetic programs to filter out relevant data from noise, two other computational methods,
programmed in R within the IDE RStudio, were used to test the results of the phylogenetic estimation model. All three
types of analysis were conducted on an Apple laptop. The second two techniques help manipulate, filter, and visualize
the data in different ways; they organize the data according to similarities and differences, and can isolate key data
points that influence the results. These three methods will be discussed further below.

4.2 Unfiltered and filtered datasets

An initial examination of the dataset reveals that there are two particular aspects of the data that are skewing the
preliminary results: the lack of sufficient data from Assur, and the presence of a large number of signs that only occur at
Ebla. The insufficient data from Assur is due to my lack of access to museums in which the corpus is housed. Ebla’s
larger number of syllabic sign values may be due to the different methods of determining syllabic values used by me
and by the team that published the Ebla syllabary, to dialectical variation, or due to the larger number of non-
administrative texts. In order, therefore, to avoid these issues and to avoid possible human error in the syllabaries |
reconstructed, all hapax values, or syllabic values at each site that are attested at only one site, were removed in the
filtered dataset.
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Table 2 below shows the number of syllabic values at each site that occur at at least two sites; Assur is a clear outlier
with only 6 of these signs attested. Because there is not enough data for Assur to be informative, this site will be
removed from further analysis.

Ebla Mari Nabada Tuttul Adab Eshnunna Kish Tutub Assur Gasur
128 100 70 105 78 60 105 108 6 90

Table 2. The number of syllabic values at each site that occur at at least one other site.

Table 3 shows the number of hapax syllabic values. The number of hapax syllabic values at Ebla is much higher than at
the other sites examined, and were subsequently filtered out of the dataset for the secondary analysis.

Ebla Mari Nabada Tuttul Adab Eshnunna Kish Tutub Assur Gasur
34 10 4 11 9 1 6 5 0 5

Table 3. The number of hapax syllabic values, or syllabic values that occur at only one site, attested at each
site.

The three methods of analysis described below were applied to both the initial unfiltered dataset — which includes hapax
syllabic values (or signs that occur at only one site), ubiquitous syllabic values (or syllabic values that occur at all sites),
and the syllabic values from Assur — as well as the filtered dataset which excludes the previous three features of the
data. The results of both the unfiltered and filtered datasets will be presented for each method below.

5. Phylogenetic Estimation

An analysis based on phylogenetic estimation!'®! can scientifically test our hypotheses about the nature of the
adaptation of cuneiform to write Semitic language(s) across Mesopotamia and Syria. The primary strength of
phylogenetic analysis is its ability to reconstruct tree- or network-like relationships across time; because the spread and
adaptation of cuneiform must have necessarily occurred over a period of time — even a relatively short one — these
methods can provide interesting insights into the nature of the script’'s spread and help us determine which sites cluster
or diverge. Phylogenetic methods are advantageous because the data input and methods used are always transparent,

and therefore the results should be repeatable.“G]

Phylogenetic methods, which were originally developed by evolutionary biologists for the analysis of trait inheritance
and gene expression in particular phyla or species over time, have been used with increasing frequency in the field of
linguistics for at least twenty years [Nichols and Warnow 2008, 760]. These methods have been employed in the
analysis and historical reconstruction of Indo-European [Gray 2003], African [Marten 2006, 43-55], and Semitic [Kitchen
et al. 2009] languages families; in the reconstruction of language and dialect relationships [Nakhleh et al. 2005a]; and to
reconstruct manuscript evolution [Barbrook et al. 1998]. Although many of these studies have produced promising
results, this application of phylogenetic inference techniques to reconstruct writing system evolution is still relatively new
and untested [Skelton 2008]. The application of phylogenetic methods to this type of data is therefore unique, and the
optimal search criteria and program settings have not yet been established. In this study, | used an optimization criterion
called maximum parsimony (described further below).

5.1 Experimental Method

Phylogenetic analyses can employ a number of different methods of searching for and evaluating phylogenetic trees
[Swofford et al. 1996, 478-93]. These methods tend to be either algorithm-based or optimality-criterion-based.
Algorithm-based methods rely on algorithms to search for trees and to determine which tree is the correct one, and
have the advantage of short computation time. Optimality-criterion-based methods, on the other hand, use different
criteria for determining which tree is the best — called the optimality criterion — to find the tree in the first place — or
the search strategy. This method is advantageous because the use of two different criteria for searching for the trees
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and for determining which one is best makes it easier to determine the likelihood that the tree produced is the correct
tree [Swofford et al. 1996, 408—9]. Optimality-criterion-based methods were used for this analysis because the relatively
small dataset (compared to datasets of millions of data points in genomic studies) does not make computation time a
concern.

Based on her work on Linear B, Skelton determined that the most appropriate optimality criterion for a phylogenetic
analysis of a writing system is maximum parsimony, and | therefore consider it here as well [Skelton 2008, 170].
Maximum parsimony has been used in the study of several language families, including the Bantu language family on a
variety of datasets, with [Bastin 1983], [Holden 2002], and [Holden et al. 2005] using only lexical data, and Rexova et al.
(2006) using grammatical data. Others have used lexical data [Nakhleh et al. 2005a] [Rexova et al. 2003] and a
combination of types of data [Nakleh et al. 2005b] to study Indo-European languages. Maximum parsimony has also
been used by Cysouw et al. to study Mixe-Zoquean [Cysouw et al. 2006].

Maximum parsimony is an optimization problem that aims to produce a tree in which the minimum number of character
state changes occurs; using this optimization problem follows the assumption that the path of least resistance would be
not to adapt or create new syllabic values. It uses a simple model of character state change, which assumes that each
change is equally likely to occur as any other change. While this assumption may not be correct for any given dataset, it
is usually not possible to estimate actual probabilities of character change, and so an assumption of equal probabilities
is necessary and appropriate; other optimality criteria, such as maximum likelihood, require explicit models of
evolutionary change, which is not possible in this case.

Maximum parsimony analyses can allow characters with missing entries; for example, maximum parsimony encounters
no problem when a language under study has no word for a given semantic slot. Since the data used here contains
characters that are not always present in each taxon, this feature of maximum parsimony is necessary.

With maximum parsimony, the phylogenetic estimation program creates a series of possible trees and then assigns
each one a “tree length,” which is the sum of the weights of the character state changes that occurred on all branches of
the tree. Maximum parsimony considers the tree with the shortest tree length — or fewest character state changes — to

be the best solution [Skelton 2008, 171].117]

It is not uncommon for a maximum parsimony method to produce a number of trees with the same tree length. In this
situation, it is possible to run an algorithm that produces a consensus tree. The algorithm examines the trees of equal
tree length in order to determine which feature(s) the trees all share, or which a majority of the trees share. The usual
features that are relevant in this determination are the splits, or bipartitions, on the leaf set induced by the edges of each
tree; in other words, a consensus tree can be a tree that has exactly all the splits that each of the input trees have

[Nichols and Warnow 2008, 770—3].[18] Since the phylogenetic estimation method produced only one tree in this case,
this consensus method was not needed.

Another technique for estimating the support values (or the likelihood values) for a single tree, or for the branches of a
given tree, is a statistical re-sampling technique called bootstrapping. Bootstrapping creates new, random datasets
using characters from the original data matrix and runs them through the same set of parameters. This technique can
be used simply to estimate support values for the edges of a tree, where the support values are the fraction of times that
that particular bipartition appears in the random bootstrap trees; it can also be used as input data in a consensus
method, like those described above, which would then be annotated with the support value estimates [Nichols and
Warnow 2008, 773]. This technique dictates that a high support value for a particular bipartition increases the likelihood
that that bipartition is accurate. This technique will be applied to the data for both the phylogenetic analysis and the
hierarchical clustering.

5.2 Taxa

Taxa are the independent variables, or more basic entities being studied. In biology, species or gene sequences are

often used as taxa; this study uses sites!19] as taxa. Using individual tablets as taxa is not an option because there is
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not enough data on most tablets for this to be viable. Using scribal hands as taxa (as were used in [Skelton 2008]) is
also not an option since hands have so far not been established, or even suggested, for these corpora [Biggs 1973, 39].

5.3 Characters

Characters are the dependent variables of a study. In biology, molecular or phenotype data are often used as
characters; this study uses syllabic values of signs used in Semitic words and proper nouns as characters. The
character states are either 1 or 0, indicating presence or absence (respectively) of that particular character in a taxon.

Using syllabic values as the characters in this study is not without its problems. While in most words or personal names
it is clear what the syllabic value is meant to be, there are some cases where it is unclear. There is also the issue of
human error, either in my own transliterations or on the transliterations and sign lists compiled by other scholars that
have been relied upon.

5.4 Program and Settings

There are a number of programs available that perform phylogenetic analyses, each of which specializes in specific
methods for estimating phylogenies. The program PAUP*, version 4.0a146 for Macintosh [Swofford 2001], specializes in
parsimony methods, and so was used to analyze this dataset. Other programs such as TNT [Goloboff et al. 2003],
Mesquite [Maddison and Maddison 2001], or PHYLIP [Felsenstein 2005] could also have been used to estimate the
phylogeny of the data through maximum parsimony.

The data matrix that was imported into PAUP* consists of 326 total characters (or sign values); 116 of these are
determined to be parsimony-uninformative, and 200 are parsimony-informative. Because of the relatively small dataset,
an exhaustive search was used to generate the optimal tree (see Figure 3). A bootstrapping resampling method was
then run using a full heuristic search strategy; the resulting consensus tree retained groups with a frequency of greater
than 50 percent (see Figure 4). For both trees, no outgroup was defined so the trees are arbitrarily rooted at the first

taxon (Ebla).[zol

5.5 Results
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Ebla

Mari

Nabada

Assur

— Adab

Eshnunna

Tutub

Kish

Gasur

Tuttul

0.05 changes

Figure 3. The first tree resulting from the phylogenetic estimation of the unfiltered dataset using maximum
parsimony in the program PAUP*.



http://www.digitalhumanities.org/dhq/vol/12/1/000368/resources/images/figure03.png

Bootstrap consensus tree
Ebla

Mari

Nabada

Assur

100 Adab

Eshnunna

100

100

Tutub

100

94

100 L Kish

Gasur

Tuttul

Figure 4. The consensus tree with p-values generated from a bootstrap resampling method on the unfiltered
dataset.

The trees resulting from this analysis will represent similarities and differences — not the interdependence or genealogy
— in the data, and could reflect three different realities and therefore support three different conclusions about the
syllabaries. The possible results could be:

1. That the syllabaries exactly mirror the geography of the sites. This would indicate a relationship between
the syllabaries that was based purely on geographic proximity of the sites. In other words, this tree would
support the conclusion that there was an organic spread of the development and use of syllabic values from
site to site.

2. That the trees mirror the geography of the sites to a certain extent. This would indicate that geography was
perhaps one factor in how similar the syllabaries examined are. In other words, this tree would suggest that
sites nearer to each other were more influenced by each other’s syllabaries and sites further away from
each other developed “genetic mutations” or independent changes in their syllabaries, but that this was not
the sole influencing factor.

3. That the trees reflect geography in no way. This would indicate that the differences observed in the
syllabaries must be attributed to another cause or causes.

The tree in Figure 4 shows the tree resulting from the phylogenetic analysis on the unfiltered dataset. The tree in Figure
5 shows the consensus tree with p-values created using a bootstrapping re-sampling technique, also on the unfiltered
dataset.

The implications of these results would suggest either that these adaptations occurred either gradually across the region
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as the technological innovation spread from site to site, or that there are other contributing factors, such as local scribal
innovation (perhaps based on dialect differences between the sites).

A few preliminary observations can be made based on these results. First, it is notable that Ebla is an outlier among the
taxa. The Mari and Tuttul syllabaries seem to be more similar to the rest of the cohort; Nabada and Assur are clustered
together. Finally, the phylogenetic estimation groups together the syllabaries of Eshnunna, Kish, Tutub, and Gasur.
Aside from the slightly closer relationship between the Mari and the Tuttul syllabaries, which could theoretically be
explained by the geographic proximity of these two sites, these results are unexpected and not immediately explainable.
Upon closer examination, the grouping of Nabada and Assur together can be explained by the relatively low number of
syllabic values attested at each site; although the reasons for this differ for each. As explained above (Section 4.2),
insufficient data was available from Assur which impacted the number of syllabic sign values in the reconstructed
syllabary. At Nabada, at the other hand, the scribes writing these tablets seem to have used significantly fewer syllabic

signs compared to logographic signs. This is an interesting and unexpected result?!]. The other patterns observed in
these results are more difficult to explain.

Ebla

Mari

Tuttul

Adab

Eshnunna

Tutub

Kish

Gasur

Nabada

0.1 changes

Figure 5. The tree resulting from the phylogenetic estimation of the filtered dataset using maximum
parsimony in the program PAUP*.
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Bootstrap consensus tree
Ebla

Mari

Tuttul

Adab
100

Eshnunna

68

Tutub

100

Kish

Gasur

Nabada

Figure 6. The consensus tree resulting from the bootstrapping resampling method on the filtered dataset.

Figures 5 and 6 show the results of the phylogenetic analysis and the bootstrapping re-sampling technique on the
filtered dataset. Most interesting is that filtering hapax syllabic values and ubiquitous syllabic values did not affect the
results. The bootstrap consensus tree of the filtered dataset reveals that Ebla and Nabada are most distant from the
other sites, and closely similar to each other, and that Mari and Tuttul are similar with a p-value of 50%. According to
this model, there are no strong associations between the Mesopotamian sites except for Kish and Gasur, whose sub-
cluster has a p-value of 52% (see the section on hierarchical clustering below for an explanation of the relevance of p-
values)

Based on this initial examination, it appears that the geography of the sites themselves is mirrored to a certain extent in
the phylogenetic analysis. This supports one hypothesis that, if significant variation is attested within the syllabaries of
these sites, that variation would be correlated with the geographic situation of the sites. In other words, local variation
and innovation in syllabic sign values existed and permeated nearby cities. These localized sign values remained the
most prominent feature of each site’s syllabary. In terms of practical relevance for modern scholars, this indicates that
the composition of the syllabary of a corpus of cuneiform texts can determine where those tablets originated.

Clustering techniques such as phylogenetic analysis are useful for determining general tendencies within a dataset by
finding the natural clusterings of that given dataset. However, since most clustering algorithms create clusters
regardless of any inherent cluster structure in the dataset, other methods are required to externally validate the results.
Hierarchical clustering and principal component analysis were therefore used to verify the results of the phylogenetic
analysis and to determine other factors contributing to the observed variation in the syllabaries.
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6. Hierarchival Clustering

Hierarchical clustering of sites by syllabic value attestations

o= -

Figure 7. The hierarchical clustering on the unfiltered (a) and filtered (b) datasets show different results. The
hierarchical clustering of the filtered dataset indicates a stronger connection between syllabary and
geography that the hierarchical clustering of the unfiltered dataset.

Hierarchical clustering[22] is a visual clustering technique that organizes data into dendrograms; in this case, the
technique was used to organize sites and syllabic values according to similarities and differences. Because the data
collected and used in this study is straightforward, binary data, using different clustering algorithms does not produce
different results. This method is in many ways similar to phylogenetic analysis, but uses different algorithms and relies
on different underlying assumptions about the dataset. If these two techniques produce the same results, that is a good
sign that the branchings and clusterings observed are present in the dataset and not a coincidence of the particular
algorithm used.

Figures 7a and 7b show the results of the hierarchical clustering (using a Manhattan distance function and a Ward
clustering metric) on the filtered and unfiltered datasets. The light grey indicates absence of a syllabic value at a site;
dark grey indicates presence. The trees along the upper x-axes of the graphs shows how the sites cluster or diverge;
the trees along the left-hand y-axes of the graphs shows the resulting clusterings of the syllabic values. It is the
clusterings of the syllabic values that determine how the sites will cluster; because of the focus on how the syllabaries of
these sites compare and relate to one another, the focus in this work is on the trees and clusterings of the sites
themselves.

Compared to the results of the analysis on the unfiltered data, the results of the filtered data (to exclude Assur, any
values that occur at only one site, or hapax syllabic values, and syllabic values that occur at all sites, or ubiquitous
syllabic values) appear different. The results of this analysis indicate that Eshnunna, Adab, Gasur, Tutub and Kish are
distinct from Nabada, Ebla, Mari, and Tuttul, the four sites in Syria. This suggests that there is a stronger geographically
driven pattern in the data than the phylogenetic estimation originally seemed to indicate.

A bootstrap resampling technique was run on the results of the hierarchical clustering on the filtered dataset (Figure 8)
using the package pvclust with a Manhattan distance method and a Ward D2 cluster method (the same methods used
in the hierarchical clustering). This package provides two types of p-values: AU (Approximately Unbiased) p-value and
BP (Bootstrap Probability) value. AU p-value, which is computed by multiscale bootstrap resampling, is a better
approximation to unbiased p-value than BP value computed by normal bootstrap resampling [Suzuki and Shimodaira
2014, 4]. The clusters in the tree that group the Syrian syllabaries and the Mesopotamian syllabaries together are

strongly supported by the data, having AU p-values of 93% and 94%, respectively.[23] The partitions grouping Mari and
Tuttul together and Ebla and Nabada are supported by the data, though less strongly, with AU p-values of 83% and 86%
respectively. The grouping of the Mesopotamian syllabaries is less strongly supported by the data (the Kish and Gasur
cluster has an AU p-value of 69%; the Adab, Eshnunna, and Tutub cluster has an AU p-value of 71%; and the
Eshnunna and Tutub cluster has an AU p-value of 73%). Overall, these support values suggest that the results of this
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analysis are supported by the data, and suggest very close affinities between the Syrian syllabaries of Ebla, Nabada,
Mari, and Tuttul. The data also strongly support a grouping of the Mesopotamian syllabaries.
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Figure 8. The AU and BP p-values support the results of the hierarchical clustering on the filtered dataset.

Principal component analysis can be used to visualize these patterns of clustering and to determine which syllabic 43
values are driving these results.

7. Principal Component Analysis

Principal component analysis (PCA)[24] is a powerful yet simple tool for analyzing multivariate data [Wold et al. 44
1987, 37]. It uses linear algebra to take a very high-dimensional space (in this case, a 326-dimensional space because
of the 326 data points, or syllabic values) and projects it into a two-dimensional space. An analysis using PCA always
begins with a data table whose rows are termed “objects” and whose columns are termed “variables.” By analyzing the
data points within this data table, one can accomplish one or several common goals: data reduction or simplification;
data modeling; outlier detection; variable selection; classification; prediction; or unmixing [Wold et al. 1987, 38]. The
primary goals of using PCA against the dataset in this study are to determine outliers and select variables. To address
these goals, PCA rotates the axes of the data table in order to find the two axes that represent the most variation, or
principal components, within the data. In other words, PCA finds the set of variables that explain the most variance
found in the dataset. These variables, or syllabic values in this case, can then be further examined using
complementary techniques if desired.

7.1 PCA on the unfiltered dataset: the number of syllabic values attested at each site is
driving the observed variation
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Figure 9. (a) The variance distribution across principal components derived from the unfiltered dataset shows
that 25% of the total variation can be attributed to the first principal component. (b) The first principal
component, which can be attributed to the number of syllabic values attested at each site, is driving the
observed variation: the large number of hapax syllabic values attested at Ebla (the first principal component)
and the lack of sufficient data at Assur (the second principal component) are driving the observed variation.

The principal component analysis on the unfiltered dataset (Figure 9a) shows that approximately 25% of the variation in 45
this dataset can be attributed to the first principal component; this component accounts for significantly more variation

than the subsequent principal components, which account for between 15% and 5% of variation in the dataset. By
plotting the first principal component against the second principal component (Figure 9b), it becomes clear that the first
principal component can be characterised by Ebla and Assur being outliers on either end of the spectrum. This
suggests that the primary factor driving the results of the principal component analysis on the unfiltered dataset is the
number of syllabic values attested at each site within the dataset; further, the large number of hapax syllabic values
attested at Ebla and the lack of sufficient data at Assur are the significant factors influencing the first principal
component.

7.2 PCA on the filtered dataset: geographic, temporal, and unknown variation drive the
observed variation
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Figure 10. The variance distribution across principal components derived from the filtered dataset shows that
when excluding hapax syllabic values, ubiquitous syllabic values, and the data from Assur the data is more
complex.
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Figure 11. The plot graph comparing the first and second principal components of the filtered dataset shows
that the first principal component can be attributed to geographic variation in the sites examined.
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Figure 12. The plot graph comparing the second and third principal components of the filtered dataset shows
that the second principal component can be attributed to temporal variation in the corpora of the sites



http://www.digitalhumanities.org/dhq/vol/12/1/000368/resources/images/figure12.png

Tutub

Ebla

Period

Tuttul 0 Old Akkadian
(ca. 2350-2200 BC)

Eshnunna O Old Akkadian & Ur Ill
(ca. 2350-2200, 2100-2000 BC)

<> Ur Il / Shakkanakku
(ca. 2100-2000 BC)

A Early Old Babylonian
Mari (ca. 2000-1900 BC)

Adab
Kish

Princ. Comp. 3
o

Geography
Southern Mesopotamia
-5- ® Northern Mesopotamia

Gasur Syria
@]

Nabada
-10-

=5 0 5 10
Princ. Comp. 1

Figure 13. The plot graph comparing the first and third principal components of the filtered dataset shows
that there is no apparent pattern to the clustering observed in the third principal component.

The graph in Figure 10 shows what percentage of the total amount of variation can be attributed to each main
component, or sets of variables, of the filtered dataset (the nature of the first three principal components will be
described further below). The results of the principal component analysis on the filtered dataset reveal that the first three
components account for nearly half of the total observed variance; only those three principal components will be
examined further. Plotting these principal components can provide a clearer picture of the patterns: the first two principal
components can be attributed to geographic and temporal variation between the datasets.

The results of the principal component analysis on the filtered dataset reveal that geographic variation is the most
significant factor contributing to the observed variation. This can be clearly observed in the plot graph in Figure 11: the
first principal component is plotted along the x-axis of the graph, and shows that Adab, Gasur, Eshnunna, Kish, and
Tutub (the sites in Mesopotamia, plotted in red for southern sites and green for the northern site) cluster together on the
left-hand side, while Mari, Tuttul, Nabada, and Ebla (the sites in Syria, plotted in blue) cluster together on the right-hand
side. These results mirror the trend observed in the heatmap in Figure 7b and seem to indicate that geography can
explain the first principal component, which accounts for almost 20% of the variation observed in the filtered dataset.

The second principal component (Figure 12, plotted along the x-axis), which accounts for 15% of the variation observed
in the filtered dataset, shows that Mari and Tuttul, and to a lesser extent Adab, are outliers, while showing the other
sites cluster together. This pattern can be attributed to the temporal variation in the corpora examined: the syllabaries of
most of the sites examined (Ebla, Nabada, Kish, Eshnunna, Tutub, Assur, and Gasur) are derived from texts dating from
the Old Akkadian period (ca. 2350-2200 BC), designated with a circular plot. The texts from Adab included in this study
date from both the Old Akkadian period and from the Ur Ill period (ca. 2100-2000 BC), designated with a square plot;
from Mari, they date to the Ur Ill (or Shakkanakku) period, designated with a diamond-shaped plot; and from Tuttul, they
date from the Early Old Babylonian period (ca. 2000-1900 BC), designated with a triangular plot.

The third principal component (Figure 12, plotted along the y-axis) displays no apparent pattern. Nabada and Gasur lie
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in opposition to Tutub, while the other sites are distributed evenly between them. This principal component is included
as a point of comparison, and demonstrates that random similarity in the data can contribute to the results of this type of
analysis; it is only with further inspection that the significance of the results of PCA can be verified and qualified.

7.3 Summary

These three analytical tools help us visualize the data in different ways. They organize the data according to similarities
and differences, and can isolate key data points that influence the results. These techniques can prompt us to think
about our data in new ways, and helps us interpret the results based on our knowledge of the historical and linguistic
realities of the period.

The results of the analyses on the unfiltered, or original, dataset suggest that the driving factor behind the variation in
the unfiltered dataset is the number of syllabic values attested at each site. The principal component analysis on this
dataset reveals that Ebla and Assur are outliers on either end of the spectrum within the first principal component: the
large number of hapax syllabic values attested at Ebla and the lack of sufficient data at Assur are the significant factors
influencing the first principal component. A closer examination of the hapax syllabic values reveals that these variables

may be indicators of dialectical variation.[25]

The results of these analyses on the filtered dataset suggest that geographic, temporal, and random variation are
driving the observed variation within the filtered dataset. The relevant syllabic values from the Syrian corpora identified
through the principal component analysis can then be examined further: the lexical items that were collected in the sign
studies of the Syrian corpora are used to further interpret the results of the computational analyses using traditional
linguistic and text-analysis techniques.

The application of statistical and computational models to this dataset has demonstrated that a close examination of
syllabaries can reveal new insights and confirm previous assumptions about the nature of the relationships between
sites that use this syllabic writing system. While similarities between syllabaries during particular periods or within
particular regions may have been assumed to exist, this methodology proves that these trends are both clearly present
and strongly supported by the data.

8. Interpretation of the results of the computational analysis

The results of the computational models on the unfiltered dataset indicate that the primary and secondary driving factors
(the first and second principal components) can be attributed to geography and time. The interpretation of the third
principal component is less clear, but is presented here as a point of comparison with the first two principal components.
The syllabic values that most significantly influence the variation in the data, as identified through the first three principal
components, will be presented and discussed here.

Tables 4-6 outline the most influential syllabic values of the top three principal components and provides their respective
loadings, or weights. In multivariate space — or within datasets that have multiple variables — the correlation between
the principal components and the original variables is called the component loadings. The component loadings are
indicative of how much of the total variation can be attributed to a given variable; in other words, the higher the
component loading is, the more important that variable is for that component. For this reason, only syllabic values with
loadings greater than a particular threshold are considered further. The threshold varies for each principal component,
and is determined visually based on the graphs in Figures 14, 16, and 18 (for the first, second, and third principal
components, respectively).
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Syl. Value Loading

kam 1.983368897
hir 1.962428466
ba [4] 1.962428466
qi [2] 1.962428466
kun 1.692715905
ag 1.612331814
tim [x] (DIN)  1.612331814
tur [2] 1.545653809
tu [3] 1.545653809
il 1.529594896
ku [8] 1.529594896
dab [6] 1.431202981
tap [x] 1.431202981
u [9] 1.431202981
sum 1.431202981
kun [3] 1.431202981
ib [2] 1.431202981
re [2] 1.347629658
par [2] 1.347629658
gur 1.347629658
qur 1.347629658
§im 1.347629658
kak 1.347629658
iz 1.347629658
har 1.347629658
bar 1.302612779
tar [2] 1.302612779
nim 1.203189376
zum 1.203189376
su [4] 1.166967631
$i [2] 1.103759203

Table 4. Principal Component 1. The syllabic values that are further examined based on the loading ranges
outlined in Figures 14, 16, and 18.




Syl. Value  Loading

su 2.722681481
lul 2.722681481
ib 2.722681481
bi [2] 2.348397624
sil [2] 2.348397624
u[3] 2.348397624
mi 2.025140491
ar 2.025140491
sa 2.000191641
dar 2.000191641
pum 1.895816769
pu 1.80880675

i§ [11] 1.80880675

kab 1.645361752
se [11] 1.619356098
re 1.568075837
un 1.568075837
qu [2] 1.56399021

num 1.484426073
la [2] 1.388553884
uz 1.342110283
de [3] 1.328955355
er 1.229854594

Table 5. Principal Component 2. The syllabic values that are further examined based on the loading ranges
outlined in Figures 14, 16, and 18.




Syl. Value  Loading

gan [2] 2.65175942

kum 2.65175942

gqu 2.408786917
su [2] 2.222928872
ri 2.222928872
wi 2.222928872
lik 2.104672973
ih 2.062260202
iq 1.986903485
ul 1.986903485
ad 1.948006674
ap 1.922014923
Su [11] 1.703013331
nun 1.703013331
8a [10] 1.703013331
kur 1.703013331
we 1.703013331
pa [2] 1.69043491

al 1.69043491

u 1.69043491

ki 1.69043491

sa 1.69043491

sar 1.642244435
sal [4] 1.422929132
bir [5] 1.422929132
ub 1.422929132
$i [2] 1.408110193
ut 1.375395679
sa [3] 1.375395679

Table 6. Principal Component 3. The syllabic values that are further examined based on the loading ranges
outlined in Figures 14, 16, and 18.

8.1 Geographic variation: the primary explanation of variation in the data



The distribution of loadings for syllabic values suggests that
loadings greater than 1.2 should be further examined.
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Figure 14. The distribution of loadings for syllabic values on the first principal component (see Tables 4—6 for
the list of syllabic values and their respective loading).
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Figure 15. The 31 variables with loadings greater than 1.2 that inform the first principal component.

The results of the principal component analysis on the filtered dataset reveal that geographic variation is the most
significant factor contributing to the observed variation. This can be clearly observed in the plot graph in Figure 11: the
first principal component is plotted along the x-axis of the graph, and shows that Adab, Gasur, Eshnunna, Kish, and
Tutub (the sites in Mesopotamia, plotted in red for southern sites and green for the northern site) cluster together on the
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left-hand side, while Mari, Tuttul, Nabada, and Ebla (the sites in Syria, plotted in blue) cluster together on the right-hand
side.

8.2 Temporal variation: the secondary explanation of variation in the data

The distribution of loadings for syllabic values suggests that
loadings greater than 1.1 should be further examined.

Loadings on the second principal component

0 50 100 150

Syllabic value index ordered by loadings on the second principal component

Figure 16. The distribution of loadings for syllabic values on the second principal component (see Tables 4-6
for the list of syllabic values and their respective loading).
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Figure 17. The 23 variables with loadings greater than 1.1 that inform the second principal component.

The second principal component (Figure 12, plotted along the x-axis), which accounts for 15% of the variation observed
in the filtered dataset, shows that Mari and Tuttul, and to a lesser extent Adab, are outliers, while shows the other sites
cluster together. This pattern can be attributed to the temporal variation in the corpora examined: the syllabaries of most
of the sites examined (Ebla, Nabada, Kish, Eshnunna, Tutub, Assur, and Gasur) are derived from texts dating from the
Old Akkadian period (ca. 2350-2200 BC), designated with a circular plot. The texts from Adab included in this study date
from both the Old Akkadian period and from the Ur Ill period (ca. 2100-2000 BC), designated with a square plot; from
Mari, they date to the Ur Ill (or Shakkanakku) period, designated with a diamond-shaped plot; and from Tuttul, they date
from the Early Old Babylonian period (ca. 2000-1900 BC), designated with a triangular plot.

8.3 Indeterminable variation: the third explanation of variation in the dataset
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Figure 18. The distribution of loadings for syllabic values on the third principal component (see Tables 4—6 for
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Figure 19. The 29 variables with loadings greater than 1.3 that inform the third principal component.
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The third principal component (Figures 12 and 13, plotted along the y-axes) displays no readily apparent pattern.
Nabada and Gasur lie in opposition to Tutub, while the other sites are distributed evenly between them. This principal
component is included as a point of comparison, and demonstrates that random similarity in the data can contribute to
the results of this type of analysis; it is only with further inspection that the significance of the results of PCA can be
verified and qualified.

9. Summary of results

A close study of the syllabaries used at individual sites produces an informative dataset; when analyzed using a number
of complementary techniques, this dataset can reveal new insights and confirm previous assumptions about the nature
of the relationships between sites that use the syllabic sub-system within the cuneiform writing system. While similarities
between syllabaries during particular periods or within particular regions may have been assumed to exist, this
methodology proves that these trends are both clearly present and strongly supported by the data.

The three computational techniques applied to this data set produced similar general results: (1) Ebla is an outlier; (2)
the Mesopotamian sites tend to cluster together more closely; and (3) the Syrian sites cluster. The concurrence in the
results of these methods strongly suggests that there is indeed variation between the syllabaries of the ten sites
examined, and that that variation is not simply random.

The results of the principal component analysis on the unfiltered dataset suggest that the driving factor behind the
variation in the unfiltered dataset is the number of syllabic values attested at each site. The principal component
analysis on this dataset reveals that Ebla and Assur are outliers on either end of the spectrum within the first principal
component: the large number of hapax syllabic values attested at Ebla and the lack of sufficient data at Assur are the
significant factors influencing the first principal component. The results of the principal component analysis on the
filtered dataset suggest that geographic, temporal, and undeterminable variation are driving the observed variation
within the filtered dataset.

By describing and comparing the most important syllabic values behind the principal components, it became apparent

that dialectical variation is likely another driving factor behind the variation observed!?8l. This factor is most significantly
observed in the unfiltered dataset due to the relatively large number of hapax syllabic values attested at Syrian sites.

No similar studies into the variation of sign values used at individual sites has been conducted for any region or period
in Mesopotamia, so it was not expected that such significant variation could be observed among the syllabic values
used at these sites. However, it is not unexpected that this variation is associated with geography and time period,
although the strength of the association is indeed unanticipated and has implications for the utility of these methods in
other studies of script and dialect variation in both ancient Mesopotamia and other ancient and modern societies.

10. Conclusions

10.1 Methodology

The use of complementary techniques, such as digital and computational methods, to aid in the study of early scripts
and cultures is a relatively new enterprise. Near Eastern archaeologists have been using complementary methods for
some time, but most scholars of ancient texts and languages have only recently begun to appreciate the utility of more
advanced computational modeling to help visualize and interpret data. As it stands, there are several projects that aim
to digitize significant numbers of cuneiform texts for such analysis, and this first step of database compilation is indeed
necessary before further analysis can be conducted. Now that these databases are in advanced stages of completion,
the data can be visualized and interpreted using more advanced computational modeling in order to answer questions,
which require data too extensive to be answered by examining these texts by hand, about the language, culture,
economy, and history of early complex societies. Perhaps most relevantly, these methods will also be readily applicable
to other fields in the humanities and social sciences.

In this study, computational techniques were used to understand and visualize how the ancient Mesopotamian
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cuneiform script spread and was adapted across modern-day Iraq and Syria in the late third millennium BCE. A dataset
was curated of cuneiform sign values used to write Semitic words written on tablets excavated from key geographic
sites and used computational techniques, including dimensionality reduction and clustering methods, to achieve a broad
view analysis of the curated data. These results directed further inquiry, in which philological approaches were used to
examine and describe the linguistic environments in which each significant value was attested.

This investigation into early cuneiform syllabaries has demonstrated the advantages of using computational methods of
analysis on humanities data. It also highlighted the relative strengths and weaknesses of different methods of analysis
on this type of data: the results of the hierarchical clustering and PCA were able to provide a more detailed and accurate
analysis of the data than the phylogenetic estimation method was. The results of this study help in understanding the
broad view of cuneiform script spread and adaptation; however, there are ways such a study could be more rigorous.
For example, it would be preferable to use the encoded cuneiform signs as the input data instead of using reconstructed
syllabic sign values, since the step of interpreting each sign value may introduce additional human error. Currently,
however, there is not a readily usable infrastructure to do this. The curation of a digital database of cuneiform signs,
encoded in Unicode, along with all possible sign values for each region and time period would be beneficial to this and
other types of studies. Ongoing efforts by the Unicode consortium have so far developed fonts for the following script
forms: Proto-Cuneiform (late fourth millennium BC), Early Dynastic cuneiform (first half of the third millennium BC), and
Neo-Assyrian cuneiform (first half of the first millennium BC), but regional or site-specific variations are not yet included.

10.2 Assyriological Implications

The advancement of digital tools to answer questions in the humanities is indeed an exciting prospect for the study of
the ancient Near East, a field whose progress has long been hampered by the destruction of cultural heritage and
political turmoil in Iraq and Syria. With the use of new methods and technologies, advancement in the field is not only
possible, but will likely produce fruitful and interesting results that will bring Assyriology into the forefront of digital
humanities scholarship.

This study attempts to give a broader view of the spread and adaptation of cuneiform across a large geographic area as
opposed to examining each site individually as an isolated case. Furthermore, a complete, comprehensive syllabary
allows us to determine whether an experimental phase in the writing system occurred at each site. The presence of this
sort of experimentation helps us ascertain whether the cuneiform script was fully adopted by each city in Syria, inclusive
of all its orthographic tendencies, or whether each city’s writing system underwent a phase of experimentation to create
a slightly different result. Preliminary evidence suggests that there were clear deviations in the syllabaries of Syria from
normative Mesopotamian cuneiform, which indicates that scribes experimented with the writing system more during this
period than during later periods. Precisely what this can tell us about the linguistic nature of third millennium Syria
should be examined through further study.

The adaptation and use of cuneiform in Syria provides an interesting case study for examining how people interacted
with logosyllabic and syllabic writing systems. The preliminary evidence suggests that in the third millennium,
particularly at sites farther away from the control of the Mesopotamian core cities, scribes were more innovative in their
adaptation and use of syllabic values; there are clear deviations in the Akkadian syllabaries of Syria from normative
Mesopotamian cuneiform, and also inconsistencies in the sign values and number of signs used syllabically across
each of the sites investigated. This suggests that, while there must have been a more prescriptive educational approach
to learning the cuneiform signs themselves and their Sumerian values, during this time period a prescribed method of
writing and adapting cuneiform to write Akkadian was not included in the scribal curriculum. This lead to different
adaptations of the cuneiform script and to slight variations in the number, types, and values of syllabic signs used in the
individual syllabaries from sites in Syria.

11. Future Applications

This preliminary investigation into early cuneiform syllabaries has demonstrated the strengths of data mining and
computational methods of analysis. These methodologies can be readily expanded and adapted to related and un-
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related areas of research within the field of Assyriology; four such areas are outlined below.

11.1 A more comprehensive investigation into third millennium Akkadian

This project could readily be expanded to include the corpora from all sites that produced cuneiform texts in the third
millennium. This would have comprised 19 sites in total, including the ten that compose that data sources for this thesis.
The additional nine sites include: Nagar, Shehna / Shubat-Enlil, Umma, Shuruppak, Abu Salabikh, Nippur, Girsu, Umm
al-Jir, and Susa. As was explained in the introduction of this thesis, many of these sites were unable to be included as a
part of the current work for a number of practical reasons: (1) inaccessibility to the tablets due to their location in
museums in Syria, Iraq, or Turkey; (2) a lack of published photographs, hand drawings, or transliterations and
transcriptions of the inaccessible texts; and (3) irrelevance of the texts to this study of the adaptation of cuneiform to
write Semitic languages (in the case of Susa). Going forward, it would be possible to expand and update this syllabary
to include the orthography of each sign, either in all cases, or, more likely at first, just in the cases where they obviously
appear to differ drastically. In the process of its expansion, the syllabary can then be digitized to create a free and easily
accessible database.

11.2 Applications of this methodology to all East Semitic dialects

Another application of this methodology would be to examine the development of the East Semitic dialects across the

entire history of the cuneiform script[27]. The wealth of written sources left behind by the cuneiform cultures comprise a
unique and comprehensive data set through which we can understand the history and development of these dialects.
These developments and relationships have been determined largely through a combination of textual analysis and the
comparative method [Hetzron 1969] [Hetzron 1976] [Faber 1997] [Huehnergard 2011] (Hetzron 1974; Hetzron 1976;
Faber 1997; Huehnergard 2011), but using computational methods to analyze the relevant data can provide new

insights into the evolution and spread of these dialects[?8l. This study would likely examine the following East Semitic
dialects:

e Eblaite (ca. 2350-2250 BC)

e Old Akkadian (ca. 2350-2200 BC)

e Ur Il Akkadian (ca. 2100-2000 BC)

e Old Assyrian (ca. 1950-1850 BC)

e Old Babylonian (ca. 2000-1600 BC)

e Middle Assyrian (ca. 1400-1000 BC)

e Middle Babylonian (ca. 1400-1100 BC)
e Neo-Assyrian (ca. 911-612 BC)

e Neo-Babylonian (ca. 626-539 BC)

11.3 Comparing computational methods to find the optimal approach

The methodology used in this thesis has significant potential to be informative and relevant not only for this project, but
for other Assyriological research projects as well. A thorough grasp on phylogenetic analysis programs such as
MacClade, Mesquite, and PAUP* in addition to the programming languages R, Python, and Perl can enable researchers
to build custom code and pipelines specifically for the analysis of syllabaries, orthographies, or other aspects of the
cuneiform script. In terms of future research, this will be particularly useful in identifying the definitive syllabaries and
sign lists for early phases of the cuneiform script — such as Uruk and Ur Il sign lists — as well as for little-understood
relatives to the cuneiform writing system, such as Proto-Elamite.

11.4 Applications to the problem of texts with no known provenance

The methodology used here has the potential to aid in providing provenance to looted or misplaced tablets. To do this, a
much larger dataset is required. In particular, a large collection of digitized texts with adequate encoding of the class of
each sign (i.e., syllabic, logographic, determinative, etc.). This dataset can rely largely on the texts published on the
CDLI database; computational methods could then be employed to identify the class of the majority of signs attested in
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most time periods and genres. Once this dataset is collected, principal component analysis can aid in the identification

of the distinctive signs or combinations of signs that, when present, suggest a specific provenance.

12. Input Data

12.1 Phylogenetic Estimation

a. Unfiltered data

#NEXUS

Begin taxa;

Dimensions ntax

taxlabels

10;

Ebla

Mari

Nabada

Tuttul
Adab

Eshnunna
Kish
Tutub
Assur
Gasur

.
14

End;

Begin data;

Dimensions ntax
Format datatype

Matrix

10 nchar=319;
standard;

1001111111111011100111001111

Ebla

oo011010011110000111111111111111
0111111111110110111011110111110
1100000111111011011101000011110
0101110001010110111001111010011
0o001101101101001111011111100101
1011001101100011011100000111111
1101111111001000111101111101010
1101011111010001111111101100110
0011010101011 000000100100101110

010111110000

000001110000000OO0C10100O0O110011

Mari

60100110010010011110110010111011
1000011100001 0000000011101000001
000000101111 1111111100110000100
010101100101 0000100000001100010
0001000100101 00111101011101010°1
0011101111100001010110110101101
0100110001100110100100010001010
0001011010101 010001100001101011
1101100111010000100111100110010

110111100000

100001010010000011101000111

Nabada

0001001001001 000111011100010111
01010010000000000O0C100010O0O01O00©O00
0101000011001 001101100000001110
0010101000101 011011101000001001
1000110100010100000101010100000
000010010011 0000001010100010110
1000011100101 000000100001000100
00001000001 00000010111100100000



0000101110001 010000000100010000

0010100110000

1000011111001 1101011001100°1

Tuttul

0001001101001110011011000010111
0001011100001 100100000110110000
0100000011001 101000110000010010
011111100010000011000000010000°1
1000110000010111001101010010000
1110110110110011001010000010110
1000011000110000100110010001101
1110110001110001001001011111101
0010110111101 000000000000100011

0010111100000

111001110000000010001001111O0

Adab

001000110001 0000010011000001010
00011000000000010O0CO0O0O0OO0OO0OO0COO0O1IO0OO0O0OO0ODO
000001000001 01100000OO0OO0OO0CO0OO0OOOO0OI1IO0T1
0101110011100000111100001001101
110100010010101001101011001000°1
1001010111100101111110010101101
0101110001100000000000011001010
0011001011000001010111000110000
010100011101 0000000000110110110

011010000001

0600000110101 000001010000011

Eshnunna

1011101111100100001101110001010
1000010110010100000100010101000
00100001011 0010110010100000000°1
0001000101110000001110000010000
1110111001001010100110101101110
60110110011111001010110100001111
0111011110011100001010001100010
1000110010110011110011110011110
0010010111101 100100100100011101

11010110110000

00000111101 00000100000010110

Kish

0110010010010000110111000001011
001001101011 0000000001010100000
10011101000101110111000000001001
0100111001001 000110100001100001
1011000100111000011010100001011
1101001111111111010100011101101
0001111001010000100100101001010
0011001111011100100111001111000
0001111110110010010101010110000

010111111000

Tutub 1 000011111110000100000100010

0110011010010000110111000101010
0011110101110000110001010100000
1100010110011010011110101000100
0101110101100001111100001100001
101100011010100001111011001000°1
1001001111100101011110010101101
11001111010100000001101101010001
0101001111001100111111011110000
010101110101 001101000001111001°1

010111100000

Assur 0 00001 01001000001 00O0OO0OO0OCOO0COO0OTI1IO

001001000001 0000010110000001000



00100000000OO0OO0O0OO0OOOOOOOOOOOOOOODO
1000000000OO0O0OO0OO0OOOOOOOOOOOOOOOO
010000000O00OOO0COOOOOOOOOOOOOOOOODO
00010001001 000000110000O0O0OO0OO0OO0COOODO
0000000O10000OO00O0O0OOO0OOOOOOOOOOOOT1
000000O0OO0OOOOOOOOOOOOOOOOOOOOOODO
000000OO0OO0OO0OOOOOOOOOOOOOOOOOOOODO
0000000OO0OOOOOOOOO1O0O0OO0OOO0OOOOOOOOODO

010000O0O0CO0OO0OOCO

Gasur 0 0 01 01 1101100000100000O000110

0110011010010000110111010001011
0001011001001 000000101000100000
1010100100010110011000100000100
010001010100000011100000000O000O00O0
0001000110101 000011010110001011
1101100101000001010100011101101
1010111001110000101000010001111
1011001011000101001011000110000
0101110101110010100001010100100

010110110110

End;

b. Filtered data

\#NEXUS

Begin taxa;

Dimensions ntax

taxlabels

Ebla

Mari

Nabada

Tuttul
Adab

Eshnunna
Kish
Tutub
Gasur

.
14

End;

Begin data;

Dimensions ntax
Format datatype

Matrix

9 nchar=188;
standard;

1111111110110011100001011111

Ebla

1101111111111001111111000111110
1111011011000011101101011100111
0011011001011010101011110001111
1100111111110110111110100011111
1110110010001001000010010010110

11111

0010000001001 100111001110111

Mari

0110001110000100011100000011111
111110001010001000000110100000°1
0011110101010011111001011100010
001010101001 0000110101010100011
6000011011111 0011001011110011010

11110



100001000101 00110000011100°1

Nabada

0101100100000000011001010011000
0111001101000001110110001110011
00000O0O1000O0O0OO0OC0OO0OO0OO1O01O0OO0OO0OO0O1O0OO0OO0OO0OOOO
01001010010000000000010000O0O010O01
1110010000000110000000O0O1O0O0OO0O1O0O00O0

010011

10111001111011000001010100°1

Tuttul

0100101110000111001101000011001
0001100001100000001000100110010
0010010100001110110111001000000
0001001110001 111000011100010010
0101111111011011100000000010011

011110

1010000000010111000110001000

Adab

000011000000O00100OO0C0OO0OO0OO0OO0O0O1O0OO0OO0OCO0OO0T1
0600000O0OO0O111001100001111000110001
0100100100011 000011101111100011
001000001101 0001010110000010101
1100011000100011000000011011110

01000

0600110100010000110111110110

Eshnunna

1000001011001 010001101100011100
0101010000000110000011010011111
010100101110011010111101101001°1
1110111101100100010101100111100
1111001111010011101101010001111

1111011

0011010000000101010001011000

Kish

0101001101011 00001011001110000°1
11110001011000000010111001110001
000000O0OO0GC1IO0111100111111010110001
100110110101000101111011100100°1
1100111100011 110110110101011000

11111

Tutub 1 01 1111000001000010101011010

0001111010111001110111001110010
0111100011010100011111100111001
1000100100011000111101111100110
1101001110101 010011110011001111
1101111000101101010100001111011

11110

Gasur 0 11 0110000000001 010101011100

010010110010010001001011010000°1
011010000001 000000110000O00OO0OO0CO0OO0T1
1000100010111101000001010110100
1011110010011101010110001010010
1100011000111001111000101010100

11011

.
14

End;

\pagebreak

12.2 RStudio



BC)"

"0ld

\begin{verbatim}

library("NMF")

library("FactoMineR")

library("data.table")

library("ggplot2")

library("cowplot")

library("ggdendro")

library("pvclust")
#data.df<-data.frame(syl matrix forR 090416)[1:319,5:14]
data.df<-data.frame(syl matrix_ forR 090416)[1:319,4:14]
rownames (data.df)<-data.df$Sign.vValue
data.df<-data.df[,2:11]
data.df<-data.df[rowSums(data.df)>0, ]

#unfiltered w/ Assur

colnames(data.df)<-gsub("Esznunna", "Eshnunna",colnames(data.df))
rclust<-hclust(dist(data.df,method="manhattan"), method="ward.D2")
cclust<-hclust(dist(t(data.df),method="manhattan"), method="ward.D2")
aheatmap(data.df,color=‘grey:2’, Rowv=rclust,breaks=c(-0.05,0.5,1.05),
labRow=NULL,main="Hierarchical clustering of sites by syllabic value
attestations \n", legend=FALSE, fontsize=14, cexCol = 0.8)

#unfiltered data w/ Assur

forpca<-t(data.df)

answer<-PCA(forpca,ncp=10,graph=FALSE)

pc.eig.df<-data.frame(answerS$eiqg)

ggplot(data=pc.eig.df[c(1:9),], aes(x=gsub("comp","Comp.",
rownames (pc.eig.df[c(1:9),])), y=percentage.of.variance)) +

geom_bar (stat="identity" +xlab("\nPrincipal Component")
+ylab("Percentage of Variance") +ggtitle("Variance distribution
across principal components derived from viable syllabic values")
coord.rs.df<-data.frame(answer$ind$coord)
gsub("Esznunna", "E?nunna",row.names (coord.rs.df))
Geography<-factor(c("Syria", "Syria", "Syria", "Syria", "Southern
Mesopotamia", "Southern Mesopotamia", "Southern Mesopotamia',

"Southern Mesopotamia", "Northern Mesopotamia", "Northern Mesopotamia"),

levels=c("Southern Mesopotamia", "Northern Mesopotamia", "Syria"))
Period<-factor(c("0ld Akkadian\n(ca. 2350-2200 BC)", "\nUr III/
Shakkanakku\n(ca. 2100-2000 BC)", "Old Akkadian\n(ca. 2350-2200 BC)",
"\nEarly 0ld Babylonian\n(ca. 2000-1900 BC)\n", "\nOld Akkadian & Ur
III\n(ca. 2350-2200, 2100-2000 BC)", "0ld Akkadian \n(ca. 2350-2200
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"0ld Akkadian\n(ca. 2350-2200 BC)", "Old Akkadian\n(ca. 2350-2200 BC)",

Akkadian\n(ca. 2350-2200 BC)", "0ld Akkadian\n(ca. 2350-2200 BC)"),
levels=c("0ld Akkadian\n(ca. 2350-2200 BC)", "\nOld Akkadian & Ur
III\n(ca. 2350-2200, 2100-2000 BC)", "\nUr III / Shakkanakku \n(ca.
2100-2000 BC)", "\n Early 0Old Babylonian \n(ca. 2000-1900 BC)\n"))

ggplot(data=coord.rs.df, aes(x=Dim.1l, y=Dim.2))+geom point(aes(shape=Period,

fill=Geography, color=Geography),size=4)+scale_shape manual
(values=c(21,22,23,24))+xlab("Princ. Comp. 1")+ylab("Princ. Comp. 2")
+geom_text (label=gsub("Esznunna","E?nunna", row.names(coord.rs.df)),
nudge_y=0.7)

#filtering out hapax signs and allsites signs
data2.df<-data.df[rowSums(data.df)>1 & rowSums(data.df)<9,-9]
colnames(data2.df)<-gsub("Esznunna","Eshnunna",colnames(data2.df))
colnames(data.df)<-gsub("Esznunna", "Eshnunna",colnames(data.df))

#convert table into final table for thesis for hapax signs
data.onesite.df<-data.df[rowSums(data.df)==1, ]
data.onesite.df$Site<-"DUMMY"
data.onesite.df[data.onesite.df$Ebla==1, ]$Site<-"Ebla"
data.onesite.df[data.onesite.df$Mari==1, ]$Site<-"Mari"



data.onesite.df[data.onesite.df$Nabada==1, ]$Site<-"Nabada"
data.onesite.df[data.onesite.df$Tuttul==1, ]$Site<-"Tuttul"
data.onesite.df[data.onesite.df$Adab==1, ]$Site<-"Adab"
data.onesite.df[data.onesite.df$E?nunna==1, ]$Site<-"E?nunna’
data.onesite.df[data.onesite.df$Kish==1, ]$Site<-"Kish"
data.onesite.df[data.onesite.df$Tutub==1, |$Site<-"Tutub"
#data.onesite.df[data.onesite.df$Assur==1, |$Site<-"Assur"
data.onesite.df[data.onesite.df$Gasur==1, |$Site<-"Gasur"
final.onesite.dt<-data.table(data.onesite.df,
final.onesite.dt<-final.onesite.dt[order(Site)]
keep.rownames=TRUE)[,.(rn, Site)] write.table(final.onesite.dt,
file="hapax signs.xls", quote=FALSE, sep="\t", row.names=FALSE)

#table of signs that occur at all sites

data.allsites.df<-data.df[rowSums(data.df[,-9])==9,-9]

write.table(rownames(data.allsites.df), file="allsites signs.xls",
quote=FALSE, sep="\t", row.names=FALSE)

#table of filtered data

write.table(rownames(data2.df),file="data filtered.xls", quote=FALSE,
sep="\t", row.names=TRUE, col.names=TRUE)

write.table(data2.df,file="data filtered.xls",sep="\t")

#hierarchical clustering

colnames(data2.df)<-gsub("Esznunna","Eshnunna",colnames(data2.df))

rclust<-hclust(dist(data2.df,method="manhattan"), method="ward.D2")

cclust<-hclust(dist(t(data2.df),method="manhattan"), method="ward.D2")

aheatmap(data2.df,color=‘grey:2’, Rowv=rclust,breaks=c(-0.05,0.5,1.05),
labRow=NULL, legend=FALSE, fontsize=14, cexCol = 0.8)

result <-pvclust(data2.df, method.dist="manhattan",
method.hclust="ward.D2", nboot=10000)

plot(result)

#PCA

colnames(data2.df)<-gsub("E?nunna", "Eshnunna",colnames(data2.df))

forpca<-t(data2.df)

answer<-PCA(forpca,ncp=3,graph=FALSE)

pc.eig.df<-data.frame(answer$eiqg)

ggplot(data=pc.eig.df[c(1:8),], aes(x=gsub("comp","Comp.",
rownames (pc.eig.df[c(1:8),])), y=percentage.of.variance)) +
geom_bar(stat="identity")+xlab("\nPrincipal Component") +
ylab("Percentage of Variance")+ggtitle("Variance distribution across
principal components \n derived from informative syllabic values \n")

coord.rs.df<-data.frame(answer$ind$coord)

#meta.pca.df<-meta.df[rownames (coord.rs.df), ]

#PC1

gsub("Esznunna", "Eshnunna", row.names(coord.rs.df))

Geography<-factor(c("Syria", "Syria", "Syria", "Syria", "Southern
Mesopotamia", "Southern Mesopotamia", "Southern Mesopotamia", "Southern
Mesopotamia", "Northern Mesopotamia"), levels=c("Southern Mesopotamia',

"Northern Mesopotamia", "Syria"))

Period<-factor(c("0ld Akkadian\n(ca. 2350-2200 BC)", "\nUr III /
Shakkanakku \n(ca. 2100-2000 BC)", "0Old Akkadian\n(ca. 2350-2200 BC)",
"\nEarly 0ld Babylonian\n(ca. 2000-1900 BC)\n", "\nOld Akkadian &

Ur III \n(ca. 2350-2200, 2100-2000 BC)", "Old Akkadian\n(ca. 2350-2200
BC)",

"0ld Akkadian \n(ca. 2350-2200 BC)", "Old Akkadian\n(ca. 2350-2200 BC)",

"0ld Akkadian\n(ca. 2350-2200 BC)"), levels=c("0ld Akkadian \n(ca. 2350-
2200 BC)",

"\nOld Akkadian & Ur III\n(ca. 2350-2200, 2100-2000 BC)", "\nUr III /

Shakkanakku\n(ca. 2100-2000 BC)", "\nEarly 0ld Babylonian \n(ca. 2000-
1900 BC) \n"))

ggplot(data=coord.rs.df, aes(x=Dim.1l, y=Dim.2))+geom point(aes
(shape=Period, fill=Geography, color=Geography),size=4)



+scale_shape manual(values=c(21,22,23,24))+xlab("Princ. Comp.
1")+ylab("Princ. Comp. 2")+geom_ text(label=gsub ("Esznunna","Eshnunna",
row.names (coord.rs.df)),nudge_y=0.5)
ggplot(data=coord.rs.df, aes(x=Dim.2, y=Dim.3))+geom point(aes
(shape=Period, fill=Geography, color=Geography),size=4)
+scale_shape_manual(values=c(21,22,23,24))+xlab(
"Princ. Comp. 2")+ylab("Princ. Comp. 3+geom text(label=gsub
("Esznunna", "Eshnunna", row.names(coord.rs.df)), nudge y=0.5)
ggplot(data=coord.rs.df, aes(x=Dim.1l, y=Dim.3))+geom point(aes(shape=Period,
fill=Geography, color=Geography),size=4)+scale_shape manual
(values=c(21,22,23,24))+ xlab("Princ. Comp. 1")+ylab("Princ. Comp.
3"+geom_text(label=gsub("Esznunna", "Eshnunna", row.names (coord.rs.df)),
nudge y=0.5)

#Extract attestations that define principal components 1-3
signs<-data.table(answer$var$contrib, keep.rownames = TRUE)

#diml excel table and visualization
diml<-signs[order(-abs(Dim.1))][,1:2,with=FALSE]
ggplot(data=diml, aes(x=seq(from=1, to=188,by=1),y=Dim.1l))
+geom point(size=1, color="black")+xlab("\nSyllabic value index ordered
by
loadings on the first principal component")+ylab("Loadings on the first
principal component\n")+ggtitle("The distribution of loadings for
syllabic
values suggests that\nloadings greater than 1.2 should be further
examined.") +geom hline(yintercept = 1.25)
diml<-diml[diml$Dim.1>1.1,]
data2.diml.df<-data2.df[diml$rn, ]
colnames(data2.diml.df)<-gsub("Esznunna", "Eshnunna",colnames(data2.diml.df))
rclust<-hclust(dist(data2.diml.df,method="manhattan"), method="ward.D2")
cclust<-hclust(dist(t(data2.diml.df),method="manhattan"), method="ward.D2")
anngeo<-list (Geography=Geography)
aheatmap(data2.diml.df,color=‘grey:2’, Rowv=rclust,breaks=c(-0.05,0.5,1.05),
annCol = anngeo, legend=FALSE,main="Hierarchical clustering of sites by
syllabic value attestations\nimportant in the first principal
component",
fontsize=10,treeheight=10, cexCol = 1, cexRow=2) write.table(diml,
file="diml signloadings.xls", quote=FALSE, sep="\t", row.names=FALSE)

#dim2 excel table and visualization
dim2<-signs[order(-abs(Dim.2))][,c(1l,3),with=FALSE]
ggplot(data=dim2, aes(x=seq(from=1, to=188,by=1),y=Dim.2)) + geom point(
size=1, color="black")+xlab("\nSyllabic value index ordered by loadings
on the second principal component")+ylab("Loadings on the second
principal
component\n")+ggtitle("The distribution of loadings for syllabic values
suggests that\nloadings greater than 1.1 should be further
examined.")+geom hline(yintercept = 1.1)
dim2<-dim2[dim2$Dim.2>1.1, ]
data2.dim2.df<-data2.df[dim2$rn, ]
colnames(data2.dim2.df)<-gsub("Esznunna", "Eshnunna",colnames(data2.dim2.df))
rclust<-hclust(dist(data2.dim2.df,method="manhattan"), method="ward.D2")
cclust<-hclust(dist(t(data2.dim2.df),method="manhattan"), method="ward.D2")
annperiod<-list(Period=gsub(""~ ","",gsub("\n"," ", Period)))
aheatmap(data2.dim2.df,color=‘grey:2’, Rowv=rclust,breaks=c(-0.05,0.5,1.05),
annCol=annperiod, legend=FALSE,main="Hierarchical clustering of sites by
syllabic value attestations\nimportant in the second principal
component",
fontsize=10,treeheight=10, cexCol = 1, cexRow=3) write.table(dim2,
file="dim2 signloadings.xls", quote=FALSE, sep="\t", row.names=FALSE)

#dim3 excel table and visualization
dim3<-signs[order(-abs(Dim.3))][,c(1l,4),with=FALSE]



ggplot(data=dim3, aes(x=seq(from=1, to=188,by=1),y=Dim.3))
+geom point(size=1, color="black")+xlab("\nSyllabic value index ordered
by loadings on the third principal component")+ylab("Loadings on the
third
principal component\n")+ggtitle("The distribution of loadings for
syllabic
values suggests that\nloadings greater than 1.3 should be further
examined. "+geom hline(yintercept = 1.3)
dim3<-dim3[dim3$Dim.3>1.3, ]
data2.dim3.df<-data2.df[dim3$rn, ]
colnames(data2.dim3.df)<-gsub("Esznunna", "Eshnunna",colnames(data2.dim3.df))
rclust<-hclust(dist(data2.dim3.df,method="manhattan"), method="ward.D2")
cclust<-hclust(dist(t(data2.dim3.df),method="manhattan"), method="ward.D2")
aheatmap(data2.dim3.df,color=‘grey:2’, Rowv=rclust,breaks=c(-0.05,0.5,1.05),
legend=FALSE,main="Hierarchical clustering of sites by syllabic value
attestations
\nimportant in the third principal component", fontsize=10,
treeheight=10,
cexCol = 1, cexRow=2)
write.table(dim3, file="dim3_signloadings.xls", quote=FALSE, sep="\t",
row.names=FALSE)

Notes

[1] This article is based on certain aspects of my doctoral research completed at the University of Oxford in 2016.
[2] For the results of this analysis, see the forthcoming publication of my doctoral thesis (Hawkins in preparation).

[3] Not included in this study are the following nine sites: Nagar, Shehna / Shubat-Enlil, Umma, Shuruppak, Abu Salabikh, Nippur, Girsu, Umm
al-Jir, and Susa.

[4] This was obtained from the Cuneiform Digital Library Initiative (www.cdli.ucla.edu), unless otherwise stated.
[5] http://virgo.unive.it/eblaonline/cgi-bin/home.cgi

[6] These genres are based on those provided in the Cuneiform Digital Library Initiative Database.

[7] ca. 2350-2200 BC

[8] The majority of the texts from Ebla used here are lexical and administrative. As an attempt to address the possibility that the larger number of
lexical texts from Ebla could skew the results of the analysis, the data sets were filtered to exclude any hapax sign values, or values that
occurred at only one site (with the majority of these hapax signs coming from Ebla). For a further explanation of the filetered and unfiltered
datasets, see Section 4.2 below. For more about the numbers of texts attested within each genre, see the following resources: Krebernik (1982-
1983), Conti (1990), and the Ebla Digital Archives.

[9] ca.2100-2000 BC

[10] ca. 2000-1900 BC

[11] Southern Mesopotamia.

[12] These are the numbers of texts from the Old Akkadian and Ur Ill periods, respectively.

[13] These are the numbers of texts within each genre from the Old Akkadian and Ur Il periods, respectively.
[14] Northern Mesopotamia.

[15] For an introduction to phylogenetic techniques, see [Nichols and Warnow 2008].

[16] See Section 12 below for the code used for the phylogenetic analysis, hierarchical clustering, and principal component analysis.


http://www.cdli.ucla.edu/

[17] See [Swofford et al. 1996, 415-24] for a full discussion of different parsimony methods.

[18] Other types of consensus trees are majority consensus and greedy consensus. According to [Nichols and Warnow 2008, 773], “the
majority consensus tree contains those edges whose corresponding bipartitions appear in strictly more than half of the input trees, and the
greedy consensus tree is formed by computing the majority consensus and then refining the tree by adding bipartitions from the input trees. By
construction, the strict consensus tree is the least resolved, the greedy consensus tree is the most resolved, and the majority consensus is in
between these two trees with respect to resolution. Also, however, the greedy consensus tree refines the majority consensus tree, and the
majority consensus tree refines the strict consensus.”

[19] Ebla, Mari, Nabada, Tuttul, Adab, Eshnunna, Kish, Tutub, Assur, and Gasur.

[20] Identifying an outgroup is desirable but not necessary. For more about outgroups and ingroups, see [Swofford et al. 1996].
[21] See Hawkins in preparation for a further discussion of this finding [Hawkins forthcoming].

[22] For more about clustering techniques, see L. Kaufman and P. J. Rousseeuw 1990 [Kaufman and Rousseeuw 1990].

[23] Clusters with a p-value of 95% or higher are considered to be very strong, while p-values higher than 90% are considered strong [Suzuki
and Shimodaira 2014, 6].

[24] For more about principal component analysis, see [Jolliffe 2002] [Wold et al. 1987].
[25] This is explored further in a forthcoming publication [Hawkins forthcoming].
[26] This is explored further in the forthcoming publication of my doctoral dissertation [Hawkins forthcoming]).

[27] One of the two prominent languages recorded in these documents was Akkadian — which is, in fact, not a single language but an umbrella
term for a series of closely related Semitic dialects that were written and spoken primarily in the regions of modern-day Iraq, Syria, and Turkey
from around 2500 BC until 70 AD [Cooper 1996, 37]. The Akkadian dialects, along with their relative Eblaite, form the entirety of the eastern

branch of the Semitic language family.

[28] The data of this study would consist of the Swadesh 200-word list [Swadesh 1955] (Swadesh 1955).
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